-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path104__easy__maximum-depth-of-binary-tree.js
87 lines (70 loc) · 1.63 KB
/
104__easy__maximum-depth-of-binary-tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Note: A leaf is a node with no children.
Example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its depth = 3.
*/
/**
* Top-Down (DFS traversal?)
* O(n) time (we visit each node exactly once)
* O(log(n)) space
*
* 20m
*/
var maxDepth = function(root) {
if (!root) return 0;
let max = 1;
topDown(root, max, 0);
return max;
function topDown(node, depth) {
if (!node) return;
if (!node.left && !node.right) {
max = Math.max(max, depth);
}
topDown(node.left, depth + 1);
topDown(node.right, depth + 1);
}
};
/**
* Bottom-Up (DFS Divide and Conquer)
* O(n) time (we visit each node exactly once)
* O(log(n)) space (worst O(n)) in the worst case, the tree is completely unbalanced)
*
* 10m
*/
var maxDepth = function(root) {
if (!root) return 0;
let maxLeft = maxDepth(root.left);
let maxRight = maxDepth(root.right);
return 1 + Math.max(maxLeft, maxRight);
};
/**
* iteratively using Queue (BFS)
* O(n) time
* O(n) space (max size of queue is the height max width...)
*
* 15m
*/
var maxDepth = function(root) {
let res = 0;
let queue = [];
if (!root) return res;
queue.push(root);
while (queue.length > 0) {
const q = queue.length;
for (let i = 0; i < q; i++) {
let node = queue.shift();
if (node.left) queue.push(node.left);
if (node.right) queue.push(node.right);
}
res++;
}
return res;
};