-
Notifications
You must be signed in to change notification settings - Fork 2
/
intergen.tex
554 lines (462 loc) · 29.7 KB
/
intergen.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
\documentclass[11pt]{article}
\usepackage{amsmath}
\usepackage{appendix}
\usepackage{bbold}
\usepackage{bm}
\usepackage{booktabs}
\usepackage[capposition=top]{floatrow}
\usepackage{fontspec}
\usepackage[bottom]{footmisc}
\usepackage[margin=1in,footskip=0.25in]{geometry}
\usepackage{graphicx}
\usepackage{lscape}
\usepackage{natbib}
\usepackage{setspace}
\usepackage{subcaption}
\usepackage{subfloat}
\bibliographystyle{abbrvnat}\bibpunct{(}{)}{;}{a}{,}{,}
%%%%
%%%% NOTE: THIS MUST BE COMPILED WITH xelatex!
%%%%
\setmainfont{Times New Roman}
\setlength{\parskip}{6pt}
%\thanks{We are grateful to X, Y and Z for useful comments, and to seminar audiences at A, B and C. Clarke acknowledges financial support from ANID Chile (FONDECYT Regular 1200634). OTHER.}
\title{The Long-Term and Intergenerational Effects of Health Intervention at Birth\thanks{Clarke acknowledges financial support from ANID Chile (FONDECYT Regular 1200634).}}
\author{Damian Clarke\thanks{Department of Economics, University of Chile \& IZA. Contact: [email protected].}
\and Nicol\'as Lillo Bustos\thanks{Department of Economics, University of Chile. Contact:}
\and Kathya Tapia Schythe\thanks{Department of Economics, University of California, Davis. Contact:}
}
\date{\today}
\begin{document}
\begin{spacing}{1.5}
\maketitle
\begin{abstract}
Targeted treatments of new-borns with delicate health stocks have been shown to have considerable returns in terms of survival and later life outcomes. We seek to determine to what degree such treatments are reflected in later life health outcomes of treated individuals, and to what degree these are passed on to early life health outcomes of the \emph{subsequent} generation. We follow three generations of linked microdata, and use a regression discontinuity design to study the impacts of targeted neonatal health policies based on birth weight assignment rules. We estimate that...
\end{abstract}
\noindent JEL Codes: I11; I18; J13; H51; O15. \\
Keywords: Early life interventions; intergenerational mobility; health care provision. \\
%\end{spacing}
\clearpage
\section{Introduction}
Returns to early life investment programs accrue over life. For how long does this accrual last?
How long are returns to early life investment programs accrued? Large public health programs focused on children with poor birth outcomes have been shown to result in immediate improvements in health and survival \citep{Almondetal2010}, which impact educational outcomes in childhood and adolescence \citep{Bharadwajetal2013}. A broader literature suggests intergenerational transfers in education and well-being. If neonatal and early life health programs spillover to future generations, this suggests that the already large benefits of such programs could be a (considerable) lower bound.
...
We trace out impacts of an early life program through childhood, adolescence, and early adulthood, and additionally follow impacted individuals into the next generation. Linking comprehensive microdata registries, we are able to observe all births in Chile between 1992-2017, their full inpatient hospitalization history, and for those that go on to have \emph{their own} births, we observe the early life health stocks and hospitalization records for their own children. We study ...
This papers also contributes, in a limited way, to a literature on the replicability crisis in social sciences, and concerns with the use of non-public data. For a particular study, when previously private data was subsequently published without restrictions, we were able to substantively replicate the findings of the original paper's private data, starting from scratch in data collation and generation. Further, updating results based on technical advances in the intervening period, and additionally updating to include a substantially longer time-frame which more than duplicated the original sample points to results that are consistent with those in the originally published research.
\clearpage
\section{Background and Context}
\begin{figure}[htpb!]
\caption{Intergenerational Transmission of Early Life Health Measures}
\label{fig:intergen}
\begin{subfigure}{0.99\textwidth}
\centering
\includegraphics[width=0.8\linewidth]{./results/gen2Health/birthWeightIntergen.pdf}
\caption{Maternal birth weight and children's birth weight}
\label{fig:intergenBW}
\end{subfigure}
\begin{subfigure}{0.99\textwidth}
\centering
\includegraphics[width=0.8\linewidth]{./results/gen2Health/lbwIntergen.pdf}
\caption{Maternal birth weight and child's low birth weight status}
\label{fig:intergenLBW}
\end{subfigure}
\floatfoot{Note: Each sub-plot documents ... \citet{Cattaneoetal2019}.
}
\end{figure}
\clearpage
\section{Data}
Between 1992 and 2017 we observe x,xxx,xxx births occurring to x,xxx,xxx mothers. Birth registries in Chile are universal, estimated to cover 99.9\% of all births [check cite DEIS]. Individuals are recorded using their national idendity number, assigned at birth. Data on these births are merged (using a masked version og the national identity number) with the hospitalization registry and the death registry, which cover all deaths and in-patient hospitalizations in the country. In total, xx,xxx births are matched to a death record before the age of 1 year. This closely agrees with the average infant mortality rate reported over this time by the World Bank (which is 8.7 per 1,000 live births).\footnote{Note that there are x,xxx deaths which occur under 1 year of age in the death registry which are not observed in the birth registry. This will occur when a child arrives to the country after being born but does not survive up until 1 year.} And in total xx,xxx births are observed to appear in the death registry at any point during this period. Of all births, x,xxx,xxx are matched to at least one hospitalization, and in total xx,xxx,xxx hospitalizations are matched with births, implying that the average number of hospitalizations per matched birth is x.xx. In Appendix \ref{app:data} we document tha match quality, observing that across registries individuals which are matched based on their unique national identity number are reported to have precisely the same birth date and sex. In less than xx\% of the matches, we observe a reporting inconsistency.
Of the births between 1992-2017, x,xxx,xxx (xx\%) are girls. Of these, xx,xxx are observed to have \emph{their own} child in the birth registry. This occurs when an individual who was born in an early year (say 1992) has a birth in a later year (say 2017, in which case she would be aged 25 years at the time of her own child's birth). In Appendix \ref{app:data} (Table \ref{tab:birthChart}) we present the number of births from each year which went on to have a birth in the future.
%Chile IMR (World Bank: https://data.worldbank.org/indicator/SP.DYN.IMRT.IN?locations=CL)
%1992 - 13.7
%1993 - 12.7
%1994 - 11.8
%1995 - 11.1
%1996 - 10.6
%1997 - 10.3
%1998 - 10.1
%1999 - 9.8
%2000 - 9.2
%2001 - 8.7
%2002 - 8.3
%2003 - 8.1
%2004 - 7.9
%2005 - 7.7
%2006 - 7.6
%2007 - 7.6
%2008 - 7.6
%2009 - 7.5
%2010 - 7.4
%2011 - 7.3
%2012 - 7.2
%2013 - 7.1
%2014 - 6.9
%2015 - 6.7
%2016 - 6.6
%2017 - 6.4
\clearpage
\section{Methods}
Estimated impacts of assignment thresholds to preferential neonatal care regimes are estimated using a standard implementation of regression discontinuity. In the case of first generation impacts of assignment on each individual's health measures (at birth and throughout life), this consists of estimating:
\begin{equation}
y_i = \alpha + f(BW_i-1500) + \beta \cdot \mathbb{1}(BW_i<1500)+X_i\gamma + \varepsilon_i.
\end{equation}
Our principal model consists of estimating local-linear models such that $f(BW_i<1500)$ allows separate linear functions on either side of the 1500 gram assignment threshold. Bandwidth choice for these local linear regressions are chosen optimally following MSE minimisation criteria derived by \citet{Calonicoetal2020a} with robust bias corrected inference of \citet{Calonicoetal2014}. A triangular kernel is used to weight observations by distance from the cut-off. As well as following recent optimal criteria for bandwidth selection and weighting, we follow document the robustness of results to the design implemented by \citet{Bharadwajetal2013}, where bandwidth is set at 200 grams on either side of the cut-off, a triangular kernel is used, and identical inclusion criteria are adopted.\footnote{In Appendix \ref{app:BLNcomp} we discuss their precise exclusion criteria as well as how it compares to our full sample. While we consistently replicate the results of \citet{Bharadwajetal2013} as a baseline comparison of first generation results, we note that when extending to a longer sample and intergenerational links, the definition of controls and inclusion criteria should not be precisely the same as in \citet{Bharadwajetal2013}. Among other things, geographic regions in Chile have been subdivided, implying alternative regional controls. Nevertheless, we document that results also hold based on their earlier definitions.}
\citet{Almondetal2010}
\citet{Barrecaetal2011}
\citet{RomanoWolf2005}
\citet{GelmanImbens2019}
\clearpage
\section{Results}
\subsection{The Early Life Impacts of Treatment on the First Generation}
\begin{figure}[htpb!]
\caption{Birthweight Assignment Thresholds and Infant Mortality}
\label{fig:IMR}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_BLN_1992_2007.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (BLN Method)}
\label{fig:IMRBLN32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_BLN_1992_2007.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (BLN Method)}
\label{fig:IMRBLN31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922007.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Optimal)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922007.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Optimal)}
\label{fig:IMROPT31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922001.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Early Cohorts)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922001.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Early Cohorts)}
\label{fig:IMROPT31}
\end{subfigure}
\floatfoot{Note: Each sub-plot estimates the impact of crossing the
VLBW threshold on infant mortality. Left-hand panels present estimates
for gestational weeks 32 and above (where assignment rules apply), while
right hand panels present estimates for gestational weeks 31 and below
where assignment rules suggest no differential assignment. Panels
(a) and (b) replicate \citet{Bharadwajetal2013}'s methods using overlapping
(30 g) bins and a 100 gram bandwidth. Panels (c) and (d) use optimal
bandwidth selection \citep{Calonicoetal2020a}, and a quadratic fit.
Panels (e) and (f) replicate optimal
plots from panels (c) and (d) focusing only on earlier birth cohorts,
who are represented as mothers in the intergenerational sample.}
\end{figure}
\begin{table}[htpb!]
\caption{Impacts of Assignment Threshold on Infant Mortality (Generation 1)}
\scalebox{0.94}{
\begin{tabular}{lcccccc} \toprule
%& (1) & (2) & (3) & (4) & (5) & (6) \\
& \multicolumn{2}{c}{BLN Sample \& Methods} & \multicolumn{2}{c}{BLN Sample, Optimal} & \multicolumn{2}{c}{Intergen Sample, Optimal} \\ \cmidrule(r){2-3}\cmidrule(r){4-5}\cmidrule(r){6-7}
& $\geq 32$ weeks & $< 32$ weeks & $\geq 32$ weeks & $< 32$ weeks & $\geq 32$ weeks & $< 32$ weeks \\ \midrule
\multicolumn{7}{l}{\textit{Infant mortality (death within one year of birth)}} \\
\input{./results/gen1IMR/IMRgen1.tex}
\bottomrule
\multicolumn{7}{p{\dimexpr\linewidth+5mm}}{\footnotesize Each column displays estimates of the change in mortality rates moving from below to above the 1,500 gram assignment threshold. In each case, local linear regression is used with a triangular kernel. The first two columns conduct a replication of the procedure in \citet{Bharadwajetal2013} using a bandwidth of 100 grams on either side of the cutoff, and including their controls and sample restrictions. Columns 3-4 use the same time period as \citet{Bharadwajetal2013}, calculating the MSE optimal bandwidth of \citet{Calonicoetal2020a} and including all feasible observations, without controls. Columns 5 and 6 replicate the optimal calculations of columns 3 and 4, focusing only on cohorts in which there are individuals who go on and have children in the intergenerational sample (birth years 1992--2001). * p$<$0.10; ** p$<$0.05; *** p$<$0.01.}
\end{tabular}}
\end{table}
Could also add days of hospitalization at birth here following figure 1 (alternatively, could look at this in sub-section below, or as an appendix).
\clearpage
\subsection{Longer-Term Health Outcomes of the First Generation}
Let's look at health outcomes over the full life, as well as their dynamic nature. Ie first look at total nights hospitalization. Then look at effects by age (1 yr, 2 yrs, ...). This could be shown graphically with a single point estimate and CI per year. Then break out and look at particular ICD classes (perhaps this is conditional on there being significant impacts on health)?
\subsection{The Intergenerational Transmission of Health at Birth}
Should start with an illustrative bin scatter \citep{Cattaneoetal2019} showing general patterns of intergenerational transmission.
Then should look at birth outcomes: birth weight, gestation, size. I think we should also look at impacts across the range of birth weight (and size?) distribution. I can implement multiple hypothesis corrections for this.
\subsection{Identification Checks}
Checks of covariate balance of mothers and fathers [FIRST GENERATION!!] (ie grandparents of our most recent generation). Density manipulations checks. Most recent iterations \citep{Cattaneoetal2020}, earlier iterations \citet{McCrary2008}. Checks of bias induced by heaping \citep{Barrecaetal2016}.
\clearpage
\section{Discussion}
\clearpage
\end{spacing}
\bibliography{refs}
\clearpage
\begin{appendices}
\setcounter{page}{1}
\renewcommand{\thepage}{A\arabic{page}}
\setcounter{table}{0}
\renewcommand{\thetable}{A\arabic{table}}
\setcounter{figure}{0}
\renewcommand{\thefigure}{A\arabic{figure}}
\clearpage
\section{Appendix Figures and Tables}
\begin{figure}[htpb!]
\caption{Birth weight Frequency (Generation 1)}
\label{fig:BWdesc}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/histFull2007.eps}
\caption{Full Sample}
\label{fig:BWdescfull}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/histShort2007.eps}
\caption{1300-1700 grams}
\label{fig:BWdescshort}
\end{subfigure}
\end{figure}
\begin{figure}[htpb!]
\caption{Birthweight Assignment Thresholds and Infant Mortality (20 Bins)}
\label{fig:IMRBin20}
%\begin{subfigure}{.49\textwidth}
% \centering
% \includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_BLN_1992_2007.eps}
% \caption{Infant Mortality $\geq$ 32 Weeks (BLN Method)}
% \label{fig:IMRBLN32}
%\end{subfigure}
%\begin{subfigure}{.49\textwidth}
% \centering
% \includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_BLN_1992_2007.eps}
% \caption{Infant Mortality $\leq$ 31 Weeks (BLN Method)}
% \label{fig:IMRBLN31}
%\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922007_20.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Optimal)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922007_20.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Optimal)}
\label{fig:IMROPT31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922001_20.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Early Cohorts)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922001_20.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Early Cohorts)}
\label{fig:IMROPT31}
\end{subfigure}
\floatfoot{Note: Each sub-plot estimates the impact of crossing the
VLBW threshold on infant mortality. Left-hand panels present estimates
for gestational weeks 32 and above (where assignment rules apply), while
right hand panels present estimates for gestational weeks 31 and below
where assignment rules suggest no differential assignment. Panels
(a) and (b) replicate \citet{Bharadwajetal2013}'s methods using overlapping
(30 g) bins and a 100 gram bandwidth. Panels (c) and (d) use optimal
bandwidth selection [xxxxCITExxxx], and a quadratic fit. Panels (e) and (f) replicate optimal
plots from panels (c) and (d) focusing only on earlier birth cohorts,
who are represented as mothers in the intergenerational sample.}
\end{figure}
\begin{figure}[htpb!]
\caption{Birthweight Assignment Thresholds and Infant Mortality (\citet{Calonicoetal2015} Bin Selection)}
\label{fig:IMRBinOpt}
%\begin{subfigure}{.49\textwidth}
% \centering
% \includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_BLN_1992_2007.eps}
% \caption{Infant Mortality $\geq$ 32 Weeks (BLN Method)}
% \label{fig:IMRBLN32}
%\end{subfigure}
%\begin{subfigure}{.49\textwidth}
% \centering
% \includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_BLN_1992_2007.eps}
% \caption{Infant Mortality $\leq$ 31 Weeks (BLN Method)}
% \label{fig:IMRBLN31}
%\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922007_optBin.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Optimal)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922007_optBin.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Optimal)}
\label{fig:IMROPT31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922001_optBin.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Early Cohorts)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922001_optBin.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Early Cohorts)}
\label{fig:IMROPT31}
\end{subfigure}
\floatfoot{Note: Each sub-plot estimates the impact of crossing the
VLBW threshold on infant mortality. Left-hand panels present estimates
for gestational weeks 32 and above (where assignment rules apply), while
right hand panels present estimates for gestational weeks 31 and below
where assignment rules suggest no differential assignment. Panels
(a) and (b) replicate \citet{Bharadwajetal2013}'s methods using overlapping
(30 g) bins and a 100 gram bandwidth. Panels (c) and (d) use optimal
bandwidth selection [xxxxCITExxxx], and a quadratic fit. Panels (e) and (f) replicate optimal
plots from panels (c) and (d) focusing only on earlier birth cohorts,
who are represented as mothers in the intergenerational sample.}
\end{figure}
\begin{figure}[htpb!]
\caption{Birthweight Assignment Thresholds and Infant Mortality (Extending to 2018)}
\label{fig:IMR2018}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_BLN_1992_2018.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (BLN Method)}
\label{fig:IMRBLN32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_BLN_1992_2018.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (BLN Method)}
\label{fig:IMRBLN31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922018.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Optimal)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922018.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Optimal)}
\label{fig:IMROPT31}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_o32_optimal_19922001.eps}
\caption{Infant Mortality $\geq$ 32 Weeks (Early Cohorts)}
\label{fig:IMROPT32}
\end{subfigure}
\begin{subfigure}{.49\textwidth}
\centering
\includegraphics[width=1\linewidth]{./results/gen1IMR/imrt_u32_optimal_19922001.eps}
\caption{Infant Mortality $\leq$ 31 Weeks (Early Cohorts)}
\label{fig:IMROPT31}
\end{subfigure}
\floatfoot{Note: Each sub-plot estimates the impact of crossing the
VLBW threshold on infant mortality. Left-hand panels present estimates
for gestational weeks 32 and above (where assignment rules apply), while
right hand panels present estimates for gestational weeks 31 and below
where assignment rules suggest no differential assignment. Panels
(a) and (b) replicate \citet{Bharadwajetal2013}'s methods using overlapping
(30 g) bins and a 100 gram bandwidth. Panels (c) and (d) use optimal
bandwidth selection [xxxxCITExxxx], and a quadratic fit. Panels (e) and (f) replicate optimal
plots from panels (c) and (d) focusing only on earlier birth cohorts,
who are represented as mothers in the intergenerational sample.}
\end{figure}
\begin{table}[htpb!]
\caption{Impacts of Assignment Threshold on Infant Mortality (Generation 1, Extending to 2018)}
\scalebox{0.94}{
\begin{tabular}{lcccccc} \toprule
%& (1) & (2) & (3) & (4) & (5) & (6) \\
& \multicolumn{2}{c}{BLN Sample \& Methods} & \multicolumn{2}{c}{BLN Sample, Optimal} & \multicolumn{2}{c}{Intergen Sample, Optimal} \\ \cmidrule(r){2-3}\cmidrule(r){4-5}\cmidrule(r){6-7}
& $\geq 32$ weeks & $< 32$ weeks & $\geq 32$ weeks & $< 32$ weeks & $\geq 32$ weeks & $< 32$ weeks \\ \midrule
\multicolumn{7}{l}{\textit{Infant mortality (death within one year of birth)}} \\
\input{./results/gen1IMR/IMRgen1_2018.tex}
\bottomrule
\multicolumn{7}{p{\dimexpr\linewidth+5mm}}{\footnotesize Each column displays estimates of the change in mortality rates moving from below to above the 1,500 gram assignment threshold. In each case, local linear regression is used with a triangular kernel. The first two columns conduct a replication of the procedure in \citet{Bharadwajetal2013} using a bandwidth of 100 grams on either side of the cutoff, and including their controls and sample restrictions. Columns 3-4 use the same time period as \citet{Bharadwajetal2013}, calculating the MSE optimal bandwidth of [CITE] and including all feasible observations, without controls. Columns 5 and 6 replicate the optimal calculations of columns 3 and 4, focusing only on cohorts in which there are individuals who go on and have children in the intergenerational sample (birth years 1992--2001). * p$<$0.10; ** p$<$0.05; *** p$<$0.01.}
\end{tabular}}
\end{table}
\clearpage
\section{Data Consistency and Descriptions}
\label{app:data}
In progress...
\begin{table}[htpb!]
\centering
\caption{Matched Observations between Microdata Registers}
\begin{tabular}{lcccc} \toprule
Register & Observations & Matched to & Matched to & Matched to \\
& & Births & Hospitalization & Deaths \\ \midrule
Births & x,xxx,xxx & xxx,xxx & x,xxx,xxx & xx,xxx \\
Hospitalization & xx,xxx,xxx & xx,xxx,xxx & --- & xx,xxx \\
Deaths & x,xxx,xxx & xxx,xxx & x,xxx,xxx & --- \\ \midrule
\multicolumn{5}{p{12.4cm}}{\footnotesize Notes: Column 1 presents the
total number of observations in each dataset between 1992 and 2017.
Column 2 notes the number of births which match to each dataset. In the
case of the birth register, it refers to the number of births which match
to other births in the data (ie mother--child links). Column 3 notes the
number of hospitalizations which match to each other database. Note that
in the case of births, the nuber of hospitalizations linked to births is not
the same as the number of births linked to hospitalizations in the preceding
column given that a single birth can be hospitalized multiple times. Finally,
column 4 notes the total number of deaths which are matched with births
[AND HOSPITALIZATIONS???] occurring in the sample.}
\end{tabular}
\end{table}
\begin{table}[htpb!]
\centering
\caption{Data Consistency Checks of Matched Microdata Bases}
\begin{tabular}{lccc} \toprule
& \multicolumn{3}{c}{Linkage Register} \\ \cmidrule(r){2-4}
Original Register & Births & Hospitalization & Deaths \\ \midrule
\multicolumn{4}{l}{\textbf{Panel A: Inconsistencies in Exact Birth Dates}} \\
Births & xx\% & xx\% & xx\% \\
Hospitalization \hspace{2cm} & xx\% & & xx\% \\
Deaths & xx\% & xx\% & \\
\multicolumn{4}{l}{\textbf{Panel B: Inconsistencies in Sex}} \\
Births & xx\% & xx\% & xx\% \\
Hospitalization & xx\% & & xx\% \\
Deaths & xx\% & xx\% & \\ \bottomrule
\multicolumn{4}{p{10.2cm}}{\footnotesize Each proportion refers to
the proportion of observations which are observed with one value
for birth date (panel A) or sex (panel B) in the ``Original Register''
and another (inconsistent) value in the linked register. In the
hospitalization register, prior to year xxxx exact date of birth
is not provided, and so ``inconsistencies'' here refer only to cases
which record different birth dates, not birth dates which are recorded
in the birth register, and then not recorded in the hospitalization
register. Similarly, in a small number of cases, sex is reported
as unkown or intersex. Here inconsistencies only refer to cases where
sex is recorded as female in one database, and male in another.} \\
\end{tabular}
\end{table}
\begin{landscape}
\begin{table}[htpb!]
\centering
\caption{Temporal Links between Mother--Child Matched Birth Years}
\label{tab:birthChart}
\begin{tabular}{lcccccccccccccccc} \toprule
Mother & \multicolumn{16}{c}{Child} \\ \cmidrule(r){2-17}
Year & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 \\ \midrule
1992 & x & xx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1993 & x & xx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1994 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1995 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1996 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1997 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1998 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
1999 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2000 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2001 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2002 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2003 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2004 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2005 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
2006 & 0 & 0 & 0 & 0 & 0 & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx & xxx \\
\bottomrule
\end{tabular}
\end{table}
\end{landscape}
\clearpage
\section{Comparison of Data and Definitions with \citet{Bharadwajetal2013}}
\label{app:BLNcomp}
\end{appendices}
\end{document}