forked from divamgupta/image-segmentation-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LoadBatches.py
executable file
·93 lines (64 loc) · 2.78 KB
/
LoadBatches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import cv2
import glob
import itertools
def getImageArr( path , width , height , imgNorm="sub_mean" , odering='channels_first' ):
try:
img = cv2.imread(path, 1)
if imgNorm == "sub_and_divide":
img = np.float32(cv2.resize(img, ( width , height ))) / 127.5 - 1
elif imgNorm == "sub_mean":
img = cv2.resize(img, ( width , height ))
img = img.astype(np.float32)
img[:,:,0] -= 103.939
img[:,:,1] -= 116.779
img[:,:,2] -= 123.68
elif imgNorm == "divide":
img = cv2.resize(img, ( width , height ))
img = img.astype(np.float32)
img = img/255.0
if odering == 'channels_first':
img = np.rollaxis(img, 2, 0)
return img
except Exception, e:
print path , e
img = np.zeros(( height , width , 3 ))
if odering == 'channels_first':
img = np.rollaxis(img, 2, 0)
return img
def getSegmentationArr( path , nClasses , width , height ):
seg_labels = np.zeros(( height , width , nClasses ))
try:
img = cv2.imread(path, 1)
img = cv2.resize(img, ( width , height ))
img = img[:, : , 0]
for c in range(nClasses):
seg_labels[: , : , c ] = (img == c ).astype(int)
except Exception, e:
print e
seg_labels = np.reshape(seg_labels, ( width*height , nClasses ))
return seg_labels
def imageSegmentationGenerator( images_path , segs_path , batch_size, n_classes , input_height , input_width , output_height , output_width ):
assert images_path[-1] == '/'
assert segs_path[-1] == '/'
images = glob.glob( images_path + "*.jpg" ) + glob.glob( images_path + "*.png" ) + glob.glob( images_path + "*.jpeg" )
images.sort()
segmentations = glob.glob( segs_path + "*.jpg" ) + glob.glob( segs_path + "*.png" ) + glob.glob( segs_path + "*.jpeg" )
segmentations.sort()
assert len( images ) == len(segmentations)
for im , seg in zip(images,segmentations):
assert( im.split('/')[-1].split(".")[0] == seg.split('/')[-1].split(".")[0] )
zipped = itertools.cycle( zip(images,segmentations) )
while True:
X = []
Y = []
for _ in range( batch_size) :
im , seg = zipped.next()
X.append( getImageArr(im , input_width , input_height ) )
Y.append( getSegmentationArr( seg , n_classes , output_width , output_height ) )
yield np.array(X) , np.array(Y)
# import Models , LoadBatches
# G = LoadBatches.imageSegmentationGenerator( "data/clothes_seg/prepped/images_prepped_train/" , "data/clothes_seg/prepped/annotations_prepped_train/" , 1, 10 , 800 , 550 , 400 , 272 )
# G2 = LoadBatches.imageSegmentationGenerator( "data/clothes_seg/prepped/images_prepped_test/" , "data/clothes_seg/prepped/annotations_prepped_test/" , 1, 10 , 800 , 550 , 400 , 272 )
# m = Models.VGGSegnet.VGGSegnet( 10 , use_vgg_weights=True , optimizer='adadelta' , input_image_size=( 800 , 550 ) )
# m.fit_generator( G , 512 , nb_epoch=10 )