-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmodel.py
533 lines (475 loc) · 21.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
Here we define the discriminator and generator for SEGAN.
After definition of each modules, run the training.
"""
import time
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch import optim
import numpy as np
from scipy.io import wavfile
from data_generator import AudioSampleGenerator
from vbnorm import VirtualBatchNorm1d
from tensorboardX import SummaryWriter
import emph
# device we're using
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# define folders for output data
in_path = 'segan_data_in'
out_path_root = 'segan_data_out'
ser_data_fdr = 'ser_data' # serialized data
gen_data_fdr = 'gen_data' # folder for saving generated data
checkpoint_fdr = 'checkpoint' # folder for saving models, optimizer states, etc.
tblog_fdr = 'logs' # summary data for tensorboard
# time info is used to distinguish dfferent training sessions
run_time = time.strftime('%Y%m%d_%H%M', time.gmtime()) # 20180625_1742
# output path - all outputs (generated data, logs, model checkpoints) will be stored here
# the directory structure is as: "[curr_dir]/segan_data_out/[run_time]/"
out_path = os.path.join(os.getcwd(), out_path_root, run_time)
tblog_path = os.path.join(os.getcwd(), tblog_fdr, run_time) # summary data for tensorboard
# create folder for generated data
gen_data_path = os.path.join(out_path, gen_data_fdr)
if not os.path.exists(gen_data_path):
os.makedirs(gen_data_path)
# create folder for model checkpoints
checkpoint_path = os.path.join(out_path, checkpoint_fdr)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
class Discriminator(nn.Module):
"""D"""
def __init__(self, dropout_drop=0.5):
super().__init__()
# Define convolution operations.
# (#input channel, #output channel, kernel_size, stride, padding)
# in : 16384 x 2
negative_slope = 0.03
self.conv1 = nn.Conv1d(in_channels=2, out_channels=32, kernel_size=31, stride=2, padding=15) # out : 8192 x 32
self.vbn1 = VirtualBatchNorm1d(32)
self.lrelu1 = nn.LeakyReLU(negative_slope)
self.conv2 = nn.Conv1d(32, 64, 31, 2, 15) # 4096 x 64
self.vbn2 = VirtualBatchNorm1d(64)
self.lrelu2 = nn.LeakyReLU(negative_slope)
self.conv3 = nn.Conv1d(64, 64, 31, 2, 15) # 2048 x 64
self.dropout1 = nn.Dropout(dropout_drop)
self.vbn3 = VirtualBatchNorm1d(64)
self.lrelu3 = nn.LeakyReLU(negative_slope)
self.conv4 = nn.Conv1d(64, 128, 31, 2, 15) # 1024 x 128
self.vbn4 = VirtualBatchNorm1d(128)
self.lrelu4 = nn.LeakyReLU(negative_slope)
self.conv5 = nn.Conv1d(128, 128, 31, 2, 15) # 512 x 128
self.vbn5 = VirtualBatchNorm1d(128)
self.lrelu5 = nn.LeakyReLU(negative_slope)
self.conv6 = nn.Conv1d(128, 256, 31, 2, 15) # 256 x 256
self.dropout2 = nn.Dropout(dropout_drop)
self.vbn6 = VirtualBatchNorm1d(256)
self.lrelu6 = nn.LeakyReLU(negative_slope)
self.conv7 = nn.Conv1d(256, 256, 31, 2, 15) # 128 x 256
self.vbn7 = VirtualBatchNorm1d(256)
self.lrelu7 = nn.LeakyReLU(negative_slope)
self.conv8 = nn.Conv1d(256, 512, 31, 2, 15) # 64 x 512
self.vbn8 = VirtualBatchNorm1d(512)
self.lrelu8 = nn.LeakyReLU(negative_slope)
self.conv9 = nn.Conv1d(512, 512, 31, 2, 15) # 32 x 512
self.dropout3 = nn.Dropout(dropout_drop)
self.vbn9 = VirtualBatchNorm1d(512)
self.lrelu9 = nn.LeakyReLU(negative_slope)
self.conv10 = nn.Conv1d(512, 1024, 31, 2, 15) # 16 x 1024
self.vbn10 = VirtualBatchNorm1d(1024)
self.lrelu10 = nn.LeakyReLU(negative_slope)
self.conv11 = nn.Conv1d(1024, 2048, 31, 2, 15) # 8 x 1024
self.vbn11 = VirtualBatchNorm1d(2048)
self.lrelu11 = nn.LeakyReLU(negative_slope)
# 1x1 size kernel for dimension and parameter reduction
self.conv_final = nn.Conv1d(2048, 1, kernel_size=1, stride=1) # 8 x 1
self.lrelu_final = nn.LeakyReLU(negative_slope)
self.fully_connected = nn.Linear(in_features=8, out_features=1) # 1
self.sigmoid = nn.Sigmoid()
# initialize weights
self.init_weights()
def init_weights(self):
"""
Initialize weights for convolution layers using Xavier initialization.
"""
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.xavier_normal_(m.weight.data)
def forward(self, x, ref_x):
"""
Forward pass of discriminator.
Args:
x: batch
ref_x: reference batch for virtual batch norm
"""
# reference pass
ref_x = self.conv1(ref_x)
ref_x, mean1, meansq1 = self.vbn1(ref_x, None, None)
ref_x = self.lrelu1(ref_x)
ref_x = self.conv2(ref_x)
ref_x, mean2, meansq2 = self.vbn2(ref_x, None, None)
ref_x = self.lrelu2(ref_x)
ref_x = self.conv3(ref_x)
ref_x = self.dropout1(ref_x)
ref_x, mean3, meansq3 = self.vbn3(ref_x, None, None)
ref_x = self.lrelu3(ref_x)
ref_x = self.conv4(ref_x)
ref_x, mean4, meansq4 = self.vbn4(ref_x, None, None)
ref_x = self.lrelu4(ref_x)
ref_x = self.conv5(ref_x)
ref_x, mean5, meansq5 = self.vbn5(ref_x, None, None)
ref_x = self.lrelu5(ref_x)
ref_x = self.conv6(ref_x)
ref_x = self.dropout2(ref_x)
ref_x, mean6, meansq6 = self.vbn6(ref_x, None, None)
ref_x = self.lrelu6(ref_x)
ref_x = self.conv7(ref_x)
ref_x, mean7, meansq7 = self.vbn7(ref_x, None, None)
ref_x = self.lrelu7(ref_x)
ref_x = self.conv8(ref_x)
ref_x, mean8, meansq8 = self.vbn8(ref_x, None, None)
ref_x = self.lrelu8(ref_x)
ref_x = self.conv9(ref_x)
ref_x = self.dropout3(ref_x)
ref_x, mean9, meansq9 = self.vbn9(ref_x, None, None)
ref_x = self.lrelu9(ref_x)
ref_x = self.conv10(ref_x)
ref_x, mean10, meansq10 = self.vbn10(ref_x, None, None)
ref_x = self.lrelu10(ref_x)
ref_x = self.conv11(ref_x)
ref_x, mean11, meansq11 = self.vbn11(ref_x, None, None)
# further pass no longer needed
# train pass
x = self.conv1(x)
x, _, _ = self.vbn1(x, mean1, meansq1)
x = self.lrelu1(x)
x = self.conv2(x)
x, _, _ = self.vbn2(x, mean2, meansq2)
x = self.lrelu2(x)
x = self.conv3(x)
x = self.dropout1(x)
x, _, _ = self.vbn3(x, mean3, meansq3)
x = self.lrelu3(x)
x = self.conv4(x)
x, _, _ = self.vbn4(x, mean4, meansq4)
x = self.lrelu4(x)
x = self.conv5(x)
x, _, _ = self.vbn5(x, mean5, meansq5)
x = self.lrelu5(x)
x = self.conv6(x)
x = self.dropout2(x)
x, _, _ = self.vbn6(x, mean6, meansq6)
x = self.lrelu6(x)
x = self.conv7(x)
x, _, _ = self.vbn7(x, mean7, meansq7)
x = self.lrelu7(x)
x = self.conv8(x)
x, _, _ = self.vbn8(x, mean8, meansq8)
x = self.lrelu8(x)
x = self.conv9(x)
x = self.dropout3(x)
x, _, _ = self.vbn9(x, mean9, meansq9)
x = self.lrelu9(x)
x = self.conv10(x)
x, _, _ = self.vbn10(x, mean10, meansq10)
x = self.lrelu10(x)
x = self.conv11(x)
x, _, _ = self.vbn11(x, mean11, meansq11)
x = self.lrelu11(x)
x = self.conv_final(x)
x = self.lrelu_final(x)
# reduce down to a scalar value
x = torch.squeeze(x)
x = self.fully_connected(x)
# return self.sigmoid(x)
return x
class Generator(nn.Module):
"""G"""
def __init__(self):
super().__init__()
# size notations = [batch_size x feature_maps x width] (height omitted - 1D convolutions)
# encoder gets a noisy signal as input
self.enc1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=32, stride=2, padding=15) # out : [B x 16 x 8192]
self.enc1_nl = nn.PReLU() # non-linear transformation after encoder layer 1
self.enc2 = nn.Conv1d(16, 32, 32, 2, 15) # [B x 32 x 4096]
self.enc2_nl = nn.PReLU()
self.enc3 = nn.Conv1d(32, 32, 32, 2, 15) # [B x 32 x 2048]
self.enc3_nl = nn.PReLU()
self.enc4 = nn.Conv1d(32, 64, 32, 2, 15) # [B x 64 x 1024]
self.enc4_nl = nn.PReLU()
self.enc5 = nn.Conv1d(64, 64, 32, 2, 15) # [B x 64 x 512]
self.enc5_nl = nn.PReLU()
self.enc6 = nn.Conv1d(64, 128, 32, 2, 15) # [B x 128 x 256]
self.enc6_nl = nn.PReLU()
self.enc7 = nn.Conv1d(128, 128, 32, 2, 15) # [B x 128 x 128]
self.enc7_nl = nn.PReLU()
self.enc8 = nn.Conv1d(128, 256, 32, 2, 15) # [B x 256 x 64]
self.enc8_nl = nn.PReLU()
self.enc9 = nn.Conv1d(256, 256, 32, 2, 15) # [B x 256 x 32]
self.enc9_nl = nn.PReLU()
self.enc10 = nn.Conv1d(256, 512, 32, 2, 15) # [B x 512 x 16]
self.enc10_nl = nn.PReLU()
self.enc11 = nn.Conv1d(512, 1024, 32, 2, 15) # output : [B x 1024 x 8]
self.enc11_nl = nn.PReLU()
# decoder generates an enhanced signal
# each decoder output are concatenated with homolgous encoder output,
# so the feature map sizes are doubled
self.dec10 = nn.ConvTranspose1d(in_channels=2048, out_channels=512, kernel_size=32, stride=2, padding=15)
self.dec10_nl = nn.PReLU() # out : [B x 512 x 16] -> (concat) [B x 1024 x 16]
self.dec9 = nn.ConvTranspose1d(1024, 256, 32, 2, 15) # [B x 256 x 32]
self.dec9_nl = nn.PReLU()
self.dec8 = nn.ConvTranspose1d(512, 256, 32, 2, 15) # [B x 256 x 64]
self.dec8_nl = nn.PReLU()
self.dec7 = nn.ConvTranspose1d(512, 128, 32, 2, 15) # [B x 128 x 128]
self.dec7_nl = nn.PReLU()
self.dec6 = nn.ConvTranspose1d(256, 128, 32, 2, 15) # [B x 128 x 256]
self.dec6_nl = nn.PReLU()
self.dec5 = nn.ConvTranspose1d(256, 64, 32, 2, 15) # [B x 64 x 512]
self.dec5_nl = nn.PReLU()
self.dec4 = nn.ConvTranspose1d(128, 64, 32, 2, 15) # [B x 64 x 1024]
self.dec4_nl = nn.PReLU()
self.dec3 = nn.ConvTranspose1d(128, 32, 32, 2, 15) # [B x 32 x 2048]
self.dec3_nl = nn.PReLU()
self.dec2 = nn.ConvTranspose1d(64, 32, 32, 2, 15) # [B x 32 x 4096]
self.dec2_nl = nn.PReLU()
self.dec1 = nn.ConvTranspose1d(64, 16, 32, 2, 15) # [B x 16 x 8192]
self.dec1_nl = nn.PReLU()
self.dec_final = nn.ConvTranspose1d(32, 1, 32, 2, 15) # [B x 1 x 16384]
self.dec_tanh = nn.Tanh()
# initialize weights
self.init_weights()
def init_weights(self):
"""
Initialize weights for convolution layers using Xavier initialization.
"""
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight.data)
def forward(self, x, z):
"""
Forward pass of generator.
Args:
x: input batch (signal)
z: latent vector
"""
### encoding step
e1 = self.enc1(x)
e2 = self.enc2(self.enc1_nl(e1))
e3 = self.enc3(self.enc2_nl(e2))
e4 = self.enc4(self.enc3_nl(e3))
e5 = self.enc5(self.enc4_nl(e4))
e6 = self.enc6(self.enc5_nl(e5))
e7 = self.enc7(self.enc6_nl(e6))
e8 = self.enc8(self.enc7_nl(e7))
e9 = self.enc9(self.enc8_nl(e8))
e10 = self.enc10(self.enc9_nl(e9))
e11 = self.enc11(self.enc10_nl(e10))
# c = compressed feature, the 'thought vector'
c = self.enc11_nl(e11)
# concatenate the thought vector with latent variable
encoded = torch.cat((c, z), dim=1)
### decoding step
d10 = self.dec10(encoded)
# dx_c : concatenated with skip-connected layer's output & passed nonlinear layer
d10_c = self.dec10_nl(torch.cat((d10, e10), dim=1))
d9 = self.dec9(d10_c)
d9_c = self.dec9_nl(torch.cat((d9, e9), dim=1))
d8 = self.dec8(d9_c)
d8_c = self.dec8_nl(torch.cat((d8, e8), dim=1))
d7 = self.dec7(d8_c)
d7_c = self.dec7_nl(torch.cat((d7, e7), dim=1))
d6 = self.dec6(d7_c)
d6_c = self.dec6_nl(torch.cat((d6, e6), dim=1))
d5 = self.dec5(d6_c)
d5_c = self.dec5_nl(torch.cat((d5, e5), dim=1))
d4 = self.dec4(d5_c)
d4_c = self.dec4_nl(torch.cat((d4, e4), dim=1))
d3 = self.dec3(d4_c)
d3_c = self.dec3_nl(torch.cat((d3, e3), dim=1))
d2 = self.dec2(d3_c)
d2_c = self.dec2_nl(torch.cat((d2, e2), dim=1))
d1 = self.dec1(d2_c)
d1_c = self.dec1_nl(torch.cat((d1, e1), dim=1))
out = self.dec_tanh(self.dec_final(d1_c))
return out
def split_pair_to_vars(sample_batch_pair):
"""
Splits the generated batch data and creates combination of pairs.
Input argument sample_batch_pair consists of a batch_size number of
[clean_signal, noisy_signal] pairs.
This function creates three pytorch Variables - a clean_signal, noisy_signal pair,
clean signal only, and noisy signal only.
It goes through preemphasis preprocessing before converted into variable.
Args:
sample_batch_pair(torch.Tensor): batch of [clean_signal, noisy_signal] pairs
Returns:
batch_pairs_var(Variable): batch of pairs containing clean signal and noisy signal
clean_batch_var(Variable): clean signal batch
noisy_batch_var(Varialbe): noisy signal batch
"""
# pre-emphasis
sample_batch_pair = emph.pre_emphasis(sample_batch_pair.numpy(), emph_coeff=0.95)
batch_pairs_var = torch.from_numpy(sample_batch_pair).type(torch.FloatTensor).to(device) # [40 x 2 x 16384]
clean_batch = np.stack([pair[0].reshape(1, -1) for pair in sample_batch_pair])
clean_batch_var = torch.from_numpy(clean_batch).type(torch.FloatTensor).to(device)
noisy_batch = np.stack([pair[1].reshape(1, -1) for pair in sample_batch_pair])
noisy_batch_var = torch.from_numpy(noisy_batch).type(torch.FloatTensor).to(device)
return batch_pairs_var, clean_batch_var, noisy_batch_var
def sample_latent():
"""
Sample a latent vector - normal distribution
Returns:
z(torch.Tensor): random latent vector
"""
return torch.randn((batch_size, 1024, 8)).to(device)
# SOME TRAINING PARAMETERS #
batch_size = 128
d_learning_rate = 0.0001
g_learning_rate = 0.0001
g_lambda = 100 # regularizer for generator
use_devices = [0, 1, 2, 3]
sample_rate = 16000
num_gen_examples = 10 # number of generated audio examples displayed per epoch
num_epochs = 86
# create D and G instances
discriminator = torch.nn.DataParallel(Discriminator().to(device), device_ids=use_devices) # use GPU
print(discriminator)
print('Discriminator created')
generator = torch.nn.DataParallel(Generator().to(device), device_ids=use_devices)
print(generator)
print('Generator created')
# This is how you define a data loader
sample_generator = AudioSampleGenerator(os.path.join(in_path, ser_data_fdr))
random_data_loader = DataLoader(
dataset=sample_generator,
batch_size=batch_size, # specified batch size here
shuffle=True,
num_workers=4,
drop_last=True, # drop the last batch that cannot be divided by batch_size
pin_memory=True)
print('DataLoader created')
# generate reference batch
ref_batch_pairs = sample_generator.reference_batch(batch_size)
ref_batch_var, ref_clean_var, ref_noisy_var = split_pair_to_vars(ref_batch_pairs)
# optimizers
g_optimizer = optim.Adam(generator.parameters(), lr=g_learning_rate, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=d_learning_rate, betas=(0.5, 0.999))
# create tensorboard writer
# The logs will be stored NOT under the run_time, but under segan_data_out/'tblog_fdr'.
# This way, tensorboard can show graphs for each experiment in one board
tbwriter = SummaryWriter(log_dir=tblog_path)
print('TensorboardX summary writer created')
# test samples for generation
test_noise_filenames, fixed_test_clean, fixed_test_noise = \
sample_generator.fixed_test_audio(num_gen_examples)
fixed_test_clean = torch.from_numpy(fixed_test_clean)
fixed_test_noise = torch.from_numpy(fixed_test_noise)
print('Test samples loaded')
# record the fixed examples
for idx, fname in enumerate(test_noise_filenames):
tbwriter.add_audio(
'test_audio_clean/{}'.format(fname),
fixed_test_clean.numpy()[idx].T,
sample_rate=sample_rate)
tbwriter.add_audio(
'test_audio_noise/{}'.format(fname),
fixed_test_noise.numpy()[idx].T,
sample_rate=sample_rate)
### Train! ###
print('Starting Training...')
total_steps = 1
for epoch in range(num_epochs):
# add epoch number with corresponding step number
tbwriter.add_scalar('epoch', epoch, total_steps)
for i, sample_batch_pairs in enumerate(random_data_loader):
# using the sample batch pair, split into
# batch of combined pairs, clean signals, and noisy signals
batch_pairs_var, clean_batch_var, noisy_batch_var = split_pair_to_vars(sample_batch_pairs)
# latent vector - normal distribution
z = sample_latent()
##### TRAIN D #####
# TRAIN D to recognize clean audio as clean
# training batch pass
outputs = discriminator(batch_pairs_var, ref_batch_var) # out: [n_batch x 1]
clean_loss = torch.mean((outputs - 1.0) ** 2) # L2 loss - we want them all to be 1
# TRAIN D to recognize generated audio as noisy
generated_outputs = generator(noisy_batch_var, z)
disc_in_pair = torch.cat((generated_outputs.detach(), noisy_batch_var), dim=1)
outputs = discriminator(disc_in_pair, ref_batch_var)
noisy_loss = torch.mean(outputs ** 2) # L2 loss - we want them all to be 0
d_loss = 0.5 * (clean_loss + noisy_loss)
# back-propagate and update
discriminator.zero_grad()
d_loss.backward()
d_optimizer.step() # update parameters
##### TRAIN G #####
# TRAIN G so that D recognizes G(z) as real
z = sample_latent()
generated_outputs = generator(noisy_batch_var, z)
gen_noise_pair = torch.cat((generated_outputs, noisy_batch_var), dim=1)
outputs = discriminator(gen_noise_pair, ref_batch_var)
g_loss_ = 0.5 * torch.mean((outputs - 1.0) ** 2)
# L1 loss between generated output and clean sample
l1_dist = torch.abs(torch.add(generated_outputs, torch.neg(clean_batch_var)))
g_cond_loss = g_lambda * torch.mean(l1_dist) # conditional loss
g_loss = g_loss_ + g_cond_loss
# back-propagate and update
generator.zero_grad()
g_loss.backward()
g_optimizer.step()
# print message and store logs per 10 steps
if (i + 1) % 20 == 0:
print(
'Epoch {}\t'
'Step {}\t'
'd_loss {:.5f}\t'
'd_clean_loss {:.5f}\t'
'd_noisy_loss {:.5f}\t'
'g_loss {:.5f}\t'
'g_loss_cond {:.5f}'
.format(epoch + 1, i + 1, d_loss.item(), clean_loss.item(),
noisy_loss.item(), g_loss.item(), g_cond_loss.item()))
### Functions below print various information about the network. Uncomment to use.
# print('Weight for latent variable z : {}'.format(z))
# print('Generated Outputs : {}'.format(generated_outputs))
# print('Encoding 8th layer weight: {}'.format(generator.module.enc8.weight))
# record scalar data for tensorboard
tbwriter.add_scalar('loss/d_loss', d_loss.item(), total_steps)
tbwriter.add_scalar('loss/d_clean_loss', clean_loss.item(), total_steps)
tbwriter.add_scalar('loss/d_noisy_loss', noisy_loss.item(), total_steps)
tbwriter.add_scalar('loss/g_loss', g_loss.item(), total_steps)
tbwriter.add_scalar('loss/g_conditional_loss', g_cond_loss.item(), total_steps)
# save sampled audio at the beginning of each epoch
if i == 0:
z = sample_latent()
fake_speech = generator(fixed_test_noise, z)
fake_speech_data = fake_speech.data.cpu().numpy() # convert to numpy array
fake_speech_data = emph.de_emphasis(fake_speech_data, emph_coeff=0.95)
for idx in range(num_gen_examples):
generated_sample = fake_speech_data[idx]
gen_fname = test_noise_filenames[idx]
filepath = os.path.join(
gen_data_path, '{}_e{}.wav'.format(gen_fname, epoch))
# write to file
wavfile.write(filepath, sample_rate, generated_sample.T)
# show on tensorboard log
tbwriter.add_audio(
'{}/{}'.format(epoch, gen_fname),
generated_sample.T,
total_steps,
sample_rate)
total_steps += 1
# save various states
state_path = os.path.join(checkpoint_path, 'state-{}.pkl'.format(epoch + 1))
state = {
'discriminator': discriminator.state_dict(),
'generator': generator.state_dict(),
'g_optimizer': g_optimizer.state_dict(),
'd_optimizer': d_optimizer.state_dict(),
}
torch.save(state, state_path)
### Can be loaded using, for example:
# states = torch.load(state_path)
# discriminator.load_state_dict(state['discriminator'])
tbwriter.close()
print('Finished Training!')