-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathvbnorm.py
104 lines (92 loc) · 3.92 KB
/
vbnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from torch.nn.modules import Module
class VirtualBatchNorm1d(Module):
"""
Module for Virtual Batch Normalization.
Implementation borrowed and modified from Rafael_Valle's code + help of SimonW from this discussion thread:
https://discuss.pytorch.org/t/parameter-grad-of-conv-weight-is-none-after-virtual-batch-normalization/9036
"""
def __init__(self, num_features: int, eps: float=1e-5):
super().__init__()
# batch statistics
self.num_features = num_features
self.eps = eps # epsilon
self.ref_mean = self.register_parameter('ref_mean', None)
self.ref_mean_sq = self.register_parameter('ref_mean_sq', None)
# define gamma and beta parameters
gamma = torch.normal(mean=torch.ones(1, num_features, 1), std=0.02)
self.gamma = Parameter(gamma.float().cuda(async=True))
self.beta = Parameter(torch.cuda.FloatTensor(1, num_features, 1).fill_(0))
def get_stats(self, x):
"""
Calculates mean and mean square for given batch x.
Args:
x: tensor containing batch of activations
Returns:
mean: mean tensor over features
mean_sq: squared mean tensor over features
"""
mean = x.mean(2, keepdim=True).mean(0, keepdim=True)
mean_sq = (x ** 2).mean(2, keepdim=True).mean(0, keepdim=True)
return mean, mean_sq
def forward(self, x, ref_mean: None, ref_mean_sq: None):
"""
Forward pass of virtual batch normalization.
Virtual batch normalization require two forward passes
for reference batch and train batch, respectively.
The input parameter is_reference should indicate whether it is a forward pass
for reference batch or not.
Args:
x: input tensor
is_reference(bool): True if forwarding for reference batch
Result:
x: normalized batch tensor
"""
mean, mean_sq = self.get_stats(x)
if ref_mean is None or ref_mean_sq is None:
# reference mode - works just like batch norm
mean = mean.clone().detach()
mean_sq = mean_sq.clone().detach()
out = self._normalize(x, mean, mean_sq)
else:
# calculate new mean and mean_sq
batch_size = x.size(0)
new_coeff = 1. / (batch_size + 1.)
old_coeff = 1. - new_coeff
mean = new_coeff * mean + old_coeff * ref_mean
mean_sq = new_coeff * mean_sq + old_coeff * ref_mean_sq
out = self._normalize(x, mean, mean_sq)
return out, mean, mean_sq
def _normalize(self, x, mean, mean_sq):
"""
Normalize tensor x given the statistics.
Args:
x: input tensor
mean: mean over features. it has size [1:num_features:]
mean_sq: squared means over features.
Result:
x: normalized batch tensor
"""
assert mean_sq is not None
assert mean is not None
assert len(x.size()) == 3 # specific for 1d VBN
if mean.size(1) != self.num_features:
raise Exception(
'Mean size not equal to number of featuers : given {}, expected {}'
.format(mean.size(1), self.num_features))
if mean_sq.size(1) != self.num_features:
raise Exception(
'Squared mean tensor size not equal to number of features : given {}, expected {}'
.format(mean_sq.size(1), self.num_features))
std = torch.sqrt(self.eps + mean_sq - mean**2)
x = x - mean
x = x / std
x = x * self.gamma
x = x + self.beta
return x
def __repr__(self):
return ('{name}(num_features={num_features}, eps={eps}'
.format(name=self.__class__.__name__, **self.__dict__))