forked from alexsavio/python-bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Graphing
961 lines (961 loc) · 71.4 KB
/
Graphing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
{
"metadata": {
"name": "Three new matplotlib plots"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "21 Interactive Plots from matplotlib, ggplot for Python, prettyplotlib, Stack Overflow, and seaborn"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Plotly is collaborative, makes beautiful interactive graphs with a URL for you, and stores your data and graphs together. This NB shows how to use Plotly to share plots from some awesome Python plotting libraries. The matplotlylib project is a collaboration with [mpld3](http://mpld3.github.io/index.html) and [Jake Vanderplas](https://github.com/jakevdp). We've put together a [User Guide](http://nbviewer.ipython.org/github/plotly/python-user-guide/blob/master/s00_homepage/s00_homepage.ipynb#Installation-guidelines) that outlines the full extent of Plotly's APIs.\n\nFor best results, you can copy and paste this Notebook and key. Run `$ pip install plotly` inside a terminal then start up a Notebook. We'll also be using ggplot, seaborn, and prettyplotlib, which you can also all install form pip. Let's get started."
},
{
"cell_type": "code",
"collapsed": false,
"input": "%matplotlib inline\nimport matplotlib.pyplot as plt # side-stepping mpl backend\nimport matplotlib.gridspec as gridspec # subplots\nimport numpy as np",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You can use our public key and username or sign up for an account on [Plotly](plot.ly/ssi). Plotly is free for public use, you own your data, and you control the privacy. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "import plotly.plotly as py\nimport plotly.tools as tls\nfrom plotly.graph_objs import *\npy.sign_in(\"IPython.Demo\", \"1fw3zw2o13\")",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": "# tls.set_credentials_file(\"IPython.Demo\", \"1fw3zw2o13\")\n# tls.get_credentials_file()",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You'll want to have version 1.0.0. If not, run `$ pip install plotly --upgrade` in a terminal. Check out our User Guide for more details on [where to get your key](http://nbviewer.ipython.org/github/plotly/python-user-guide/blob/master/s00_homepage/s00_homepage.ipynb#Installation-guidelines). Problems or questions? Email [email protected] or find us on [Twitter](https://twitter.com/plotlygraphs)."
},
{
"cell_type": "code",
"collapsed": false,
"input": "import plotly\nplotly.__version__",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": "'1.0.0'"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "I. matplotlib Gallery graphs"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "For matplotlib experts, you'll recognize these graphs from the [matplotlib gallery](matplotlib.org/gallery.html). \n\nIn addition to matplotlib and Plotly's own [Python API](https://plot.ly/python), You can also use Plotly's other [APIs](https://plot.ly/api) for MATLAB, R, Perl, Julia, and REST to write to graphs. That means you and I could edit the same graph with any language. We can even edit the graph and data from the GUI, so technical and non-technical teams can work together. And all the graphs go to your profile, like this: https://plot.ly/~IPython.Demo.\n\nYou control [the privacy](http://plot.ly/python/privacy) by setting `world_readable` to False or True, and can control your [sharing](http://plot.ly/python/file-sharing)."
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Let's get started with this [damped oscillation](http://matplotlib.org/examples/pylab_examples/legend_demo2.html) graph."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig1 = plt.figure()\n# Make a legend for specific lines.\nimport matplotlib.pyplot as plt\nimport numpy as np\n\n\nt1 = np.arange(0.0, 2.0, 0.1)\nt2 = np.arange(0.0, 2.0, 0.01)\n\n# note that plot returns a list of lines. The \"l1, = plot\" usage\n# extracts the first element of the list into l1 using tuple\n# unpacking. So l1 is a Line2D instance, not a sequence of lines\nl1, = plt.plot(t2, np.exp(-t2))\nl2, l3 = plt.plot(t2, np.sin(2 * np.pi * t2), '--go', t1, np.log(1 + t1), '.')\nl4, = plt.plot(t2, np.exp(-t2) * np.sin(2 * np.pi * t2), 'rs-.')\n\nplt.xlabel('time')\nplt.ylabel('volts')\nplt.title('Damped oscillation')\n\nplt.show()",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW5+L+bANlEIOEe7ksiNcSASbiJIglaBE1Rq1LE\nqqDWUooEj1VPexQZrK0W6ymXWo6n8jO0iD2KhQJRJCIBAblIEhEIaoPL/RICCbckhmR+f8zuZvaW\n7CabveX55jOfndvOvjN5Zp55n9trUFVVRRAEQRA8ICLQDRAEQRBCB1EagiAIgseI0hAEQRA8RpSG\nIAiC4DGiNARBEASPEaUhCIIgeIwoDUFoImazmYiICOrq6vzye3feeSd///vfAcjJyeGWW26xbYuI\niODQoUNNOu4777zD+PHjfdJGIfwRpSEEFJPJRExMDB07dqR///7ceuutrFy5MtDNCko+/PBDHn74\n4WYdw5Wi++lPf8rHH3/c3OYJrQRRGkJAMRgMrFu3jgsXLvDBBx9w44038tRTT/HMM88EumlhjeT0\nCk1FlIYQNAwbNozf//73zJs3jwULFvDvf/8bgNzcXNLS0oiNjWXcuHH87W9/s33H+ua8cuVKkpKS\nGDBgAO+++y7FxcWMHj2aAQMGsHDhQtv+OTk5jB49mhdeeIFevXoxefJkiouLbdsrKytZunQpI0aM\nYPTo0bz//vu2B6yqqqxYsYLk5GRSU1PZsmVLg+dz/PhxXnjhBUwmE48++iiFhYW2bVu3buWOO+6g\nc+fO9OnTh9dff922bc+ePcyYMYPu3btz7bXXsmHDBgAyMzNZunRpo9exoes1ZswYAOLi4ujYsSM7\nduxwMnV98803ZGdn069fP2bPns23335r25aZmcmrr77K+PHj6dmzJ08//TTl5eWNtkkII1RBCCAm\nk0nduHGj3brS0lK1TZs26j/+8Q9VVVU1Pz9f3bdvn3r16lV1/fr1aocOHdRvv/1WVVVV/e6771SD\nwaA++OCD6vHjx9W3335bveaaa9SsrCy1qKhI/fLLL9WOHTuqR44cUVVVVd9++221bdu26q9+9Sv1\nzJkz6quvvqr26tXL9tv/8R//oT7wwAPqd999pxYVFakpKSnqhg0bVFVV1bVr16oJCQnqZ599pn75\n5ZfqyJEj1YiICLW2ttbluY0ZM0Z98skn1TNnzqhLly5VO3bsqFZWVqqqqqrDhg1TV61apdbW1qrl\n5eVqQUGBqqqqeubMGbV9+/bqm2++qV6+fFk9fvy4evDgQVVVVTUzM1NdunSp7TxGjx5t+y2DwaCW\nlJQ0er3MZrNqMBjs2ux4rP79+6svv/yyevbsWfWVV15RTSaTbVtGRobat29f9ZNPPlGPHTumDh8+\nXH3rrbc8+E8L4YIoDSGguFIaqqqqKSkp6muvvebyOw899JD6xz/+UVXVeqVhfejW1NSoMTEx6qJF\ni2z7jxs3Tn377bdVVdUekFFRUbaHt6qqaq9evdQ9e/aodXV1qslksikYVVXVP/3pT+ovf/lLVVVV\ndcaMGeqcOXNs25YuXer0ALZSWlqqRkdHq5cuXbKtu/nmm9V//vOfqqqqanp6uvrHP/5RPX/+vN33\n/vKXv6h33323y/P2VGl4cr3cKY2CggK1Z8+edt/v3bu37fpmZmaqs2bNsm175ZVX1MmTJ7v8XSE8\nEfOUEHSUlpZy8OBB+vbtC8D+/ft59NFHue6664iNjWXlypXs3bvX7js33HADAG3atKFz5862ZYAe\nPXpw4sQJ2/LAgQMxGo225bS0ND7//HO+/vprDh8+zJAhQ+jUqROdOnVi7ty5bNu2DYBdu3aRmppq\n9z137Nixg4SEBK655hrbumHDhvHZZ58B8Le//Y0vv/yShIQEJk2axJdffglAfn4+N998s3cXzAFP\nrpc7tm3bRnp6ut26YcOGsXXrVtuy/hrEx8dz/PjxZrVXCC1EaQhBx5o1a1BV1fbweuaZZ+jTpw+b\nN2+moqKC++67r1mO3G+//ZbKykrbcmFhIaNGjeIHP/gBffv25cCBA5w/f57z589TUVFBUVERACNG\njLDzSxQUFLj9jRtvvJFDhw5x+fJl27rdu3fbfArXX389f/vb3zh58iSDBw/mZz/7GQBjx461e0A3\nhYauV2RkJODeEX7zzTc7ndeePXvsfB5C60aUhhBwrA+wgoIC5syZw7x588jOzmbgwIEAnDhxgq5d\nuxIbG8uaNWtYs2ZNk38DoK6ujrlz51JaWsprr70GQHp6OhEREUyePJn//M//pLi4mLq6OkpKSmwO\n7zvvvJN3332Xbdu2sXfv3gad0l27dmX48OH813/9F2fOnCEnJ4f9+/czfvx4ampqeOedd6ioqAAg\nJiaGDh06AHDfffeRn5/P0qVLuXz5MsePH+frr7/26lwbul59+vShe/fufPHFFy6/m5aWRrt27Xjl\nlVc4e/Ys8+fPp02bNna9i+YobCH0EaUhBJyJEyfSsWNH7rnnHrZu3cof//hH/vu//9u2/fXXX+e9\n996jX79+vPvuu0yfPt3u+waDodHf0O8zcuRI2rZtyw033MDu3btt0UkAiqIwduxYZsyYQefOnZk0\naRKnTp0CNKWhKApPPPEEjzzyCDNmzGjwt9955x1iYmIYPnw4+fn5bNy4kejoaACWL1/OgAED6Nev\nHzt37mTBggUAdOvWjY0bN7Jjxw769+9PZmYmR44ccXk++t/Wzzter1/84hd2+82ZM4fHH3+cTp06\nsXPnTqdjrV+/nuPHj5OWlsbRo0dZv36922vp+F0h/DGoAXxteOyxx8jNzaV79+589dVXTtvz8/O5\n++67SUhIALS3sBdeeMHfzRTCiJycHJYuXWrzLQiC4B1tAvnjjz76KLNmzeKRRx5xu09GRkaTzBGC\nIAiC7wmoeeqWW26hU6dODe4j9lPBl4g5RRCaR1D7NAwGA9u3byc1NZWnn36akpKSQDdJCHGmTp3a\naCa3IAjuCWqlkZ6eztGjR9m9ezfJycnMnj070E0SBEFo1QTUEQ5a7aCJEye6dITrUVWV+Ph4jhw5\nQlRUlN22a6+9VnohgiAIXpKYmGir8eYpQd3TOH36tM2nsXbtWoYMGeKkMABKSkpQtZIoMjVzmjt3\nbsDbEE6TXE+5nsE8NeVlO6DRU1OmTGHz5s2cPXuWvn37Mm/ePGpqagCYPn06K1euZMmSJbRp04Yh\nQ4bYVQIVBEEQ/E9Alca7777b4PaZM2cyc+ZMP7VGEARBaIygNk8J/iczMzPQTQgr5Hr6FrmegSfg\njnBfYDAYCIPTEARB8CtNeXZKT0MQBEHwGFEagiAIgseI0hAEQRA8RpSGIAiC4DGiNARBEASPEaUh\nCIIgeIwoDUEQBMFjRGkIgiAIHiNKQxAEQfAYURqCIAiCx4jSEARBEDxGlIYgCILgMaI0BEEQBI8R\npSEIgiB4jCgNQRAEwWNEaQiCIAgeI0pDEARB8BhRGoIgCILHiNIQBEEQPEaUhiAIguAxojQEQRAE\njxGlIQiCIHiMKA1BEATBY0RpCIIgCB4jSkMQBEHwGFEagiAIgseI0hAEQRA8RpSGIAiC4DGiNARB\nEASPEaUhCIIgeIwoDUEQBMFj2gS6AYIgCIJ3/Hztz/mm7Bti2saw4r4VxBnj/Pbb0tMQBEEIMb4p\n+4bNhzfz0b8/4udrf+7X3xalIQiCEGLEtI0BYFivYfzvxP/1628HVGk89thj9OjRg8GDB7vd5ze/\n+Q0JCQkMHTqUgwcP+rF1giAIwcmK+1YwKXkSeQ/n+dU0BWBQVVX16y/q+Oyzz2jfvj2PPPIIX331\nldP2Xbt28fTTT7NmzRo+/vhj3nnnHdatW+e0n8FgIICn4ZbcvFwWrVjE8dPHOXzkMLSBNsY2DOg+\ngN/O+i1Z47IC3UShlaKXzVOlp2hvbM+lqkv07NmTXl16kf1gtshnCxFIf4QjTXl2BlRpAJjNZiZO\nnOhSaSxevJja2lqeeuopABITEykpKXHaL9iURm5eLnMWzKH4XDFVSVXwJdAeuA0wAyXQ9mJbUvqm\niPIQ/I4yX2H+qvlUJlVCCZCI/WcERJdH89yDz6E8pwSyqWFJZk4mmw9vBmBS8iTem/RewNrSlGdn\nUPs0du3aRXJysm25W7duLpVGMKHMV5j04iQKLxZSNaFKuwkdFAa3QU1qDYXlhdz/m/tJvyud3Lzc\nQDZbaAXk5uWSnpXOSzkvUTmh0iaLdgrjNmAAVHas5KXlL4lstgCB9Ef4gqAOuVVV1UkLGgwGl/tO\nnKiQmgqRkZCZmUlmZqYfWliPtXdR9F0R6mQVNlk26NWy9aY0Y7tRq0qqKLxQyKRnJ8mbndAi2PV8\n21ZBd8uGCN2no2zeBqpZpbBEe7EZtHiQ9IrxjWlpxX0r+Pnan/O/E//X76ap/Px88vPzm3WMoFYa\nI0eO5MCBA4wfPx6A0tJSEhISXO5bWanw7rswbx7ccos/W6ndlLPfmE3JxZL6G7LO4RPqb1LHNzug\nkkrmr5rP8LThrf7GFHyHnWxOQHuZcZTNOuxl00F5VFFFIYXMfmM2QKuWT2uoK2gKpCmmpThjXMBM\nUo4v1PPmzfP6GEFtnho5ciQffPABZWVlrFixgkGDBrnd95NP4K9/hTfegBtugFWrwB9ujty8XKb+\n11RK0kq0q2m9EROBjZbPS5Z56zb9mx1oN+hGqIyqZOrzU8UcIPiMOYvn1MsmaDKol03r51nLdlfK\nYyOwCUrOlTBnwRx/NT0oCXXTki8IaE9jypQpbN68mbNnz9K3b1/mzZtHTU0NANOnT2fEiBGMHj2a\nYcOG0blzZ5YvX97g8caOhW3b4MMP4YUX4Pe/h5dfhttvBzdWrWZhfYsru6ZMW6G/Ia0K4RBwCaIr\no1FVleo11ajXqPU3pxk7BVJGmbzRCT4hNy+X4hPFMBT7lxlrT/cQcBkiPo+gfZv2XFpzibprLDtG\n4CSbAMXri8nNyw1Z2WyueSmQpqVgIeDRU77AVQRAXR188AG8+CJ07ap9/vCHvlUe6XelUzi0sF5J\nmLG/IQ0QXRHNc1PqfRVOvg+9grF+PwK6XOnCst8tC9mbUwgs1h5wWXSZk7kJM3AIjJeNJPdO5qUn\nXyJrXJaz7wPCTjaDKXIpGAi76KnmEBEBkybBvn0wYwZkZ8PNN8P69b4xW9ne4qC+d2HCpjCMl42k\nx6bz/vz37ZzbWeOyKMgt4MVpLxK9Ptp1j2MslGVpPQ4xVQneYtcDdpTNT8Gwx0B6XDorX1nJnn/t\nsT38rbK58qWVpHVIw1BuecMyEzayKeal5hO2PQ1Hamth5Ur47W8hJkbreWRlNa3n4fQWB7a3Nwye\nv4nl5uUy9fmplGWVOfdWLP6RtA5pFOQWeN9IoVVik80fOciURTZRIa29ZzLl1JOGkO9xlFeVt3rz\nkp6QTO7zBd6ceF2d5iR/6SUtPPfFF+Guu7SeiSfYolHKS2AATjZf43ojK19a6fGN5OvjCa0XO1ka\ni0ufRGJBIgufXOiRPHl0vMJEFs707HjNJZgyqcMFURpeUFcHa9dqyuPqVZgzB+69t2Hl4cu3OKfj\nPj+VMmNZ2LzRCf7Hbc/Ayx6wnmDqDYs/wveIT8MLIiLg7rvhiy+0KKv58yElBd5+G77/3nl/p0gp\nva34VmAsJMYl8tunfut1W7LGZbHsd8swXjFqK8yEjQ1Z8A8ufWxgk8/E2MQmvXhYZTOxMNE5omqs\n9ll8rtgvsin+iOCg1fY0HFFV2LhRUx4HDsB//Af8/OfQoYO2ffyj49lg2uDTtzhHXL4p6hh/eDzr\n/9/6Jh9fCF/GPzqeDSUbWkw2XfaG9b/fiGz6wrQk/gjfIz2NZmAwaCG5GzbAmjWwezcMGADPPw/L\n389lV/EubUcfvsU58ttZv61/o7NixpZcteurXdLbEJzIzbPIpwvZNFYbfSKbTr1h8Eo2fTFokDWT\nWhRGYAnqMiKBIj0d/vEPOHQIZj2TyytrZ6PGlWsbTZadPsX2Frfwd75xBFqPMfX5qZRR5uR4PM95\nSfwT7LCaTcvblTvJJioM6jzIZ7KSNS6LQYsHUUih17IppqXwQXoaDZCQAFdjF6HeV9KiPQw9djZk\nh0gVgJK0Eha/u9hnvyeENotWLNLKhPjQx9YQtt6wl7IZyEGDBN8iPY1GOFF2QrsRTZYVlre4yJOd\nuP+BhYwf6/s3fqsSenjOw5znvFO0yrH2x3z+m0LoYTNLmXCSz06XO7Hw977pATv6IxaysF42wU4+\nd13e5bLMSCCL9Am+RXoaDZCbl0vJEd34HSZsb3GDrx3B9k1ZJCRozvPz533721njshg+aLjLaJVD\n5w+Jb6OVY2eWsmLCJp8jBo/wWQ/Y0R9hk01wks/zPzovkX5hjiiNBli0YhGVaZX1ZikL0eujefmp\nWWzZAqtXw8dvTmNSt0zGRsdza5t2PNCmDWMNBn5iMPBAmzY80K4d0+LjUTIzUaZN8/j3sx/MJrow\n2skMUDmhUkxUrRwns5SOxIJEZk2Z5bPfcuWPyH4wW0yorRQxTzVAtVqtZWmDnXMxoVMCWeOyNAVg\nNtO3rIic2gqUWm1XRT/V1mo1TE6fhtOnMRcVoWRmgsmEkpPT4O9njcsisV8i+9jntK2qrsoXpyiE\nKNVqtTZjsqxoAbOUFVeVXZ1MqA6IfIYv0tNwQ25eLvv2Wx7WJmzdfm6FPvF9UKZNw7x6NcrmzZgq\nKjw+rqmiAjZv1r7rQa+jV5de9QtmbCGO+w7sExNAK+bCuQv1CyYaNEv9fO3PyczJ5M537qS8qhxv\ncRfq6mSmssgmG+FC6QWE8ESUhgts2d8pZU5d/5S32jPwi+OYV6/2SlkoDsumigpNcTRisrKZAcxI\nlrgAaPJ5suKkk2zGb413aZbyRY6EO7IfzCb+03gnv9vJmpMim2GKKA0X2OzFJmzlpNkEXXK7kNnJ\nxOKv9nmlMPQounm7Xocb5ZE1LouFMxfSZX8XsR0LgCafp249ZSebfAo92/X0e45E1rgsesb2dJLN\nUzefEtkMU8Sn4YBdGCPYwhn7r4LUU1e5WHXUJ7+j6BcsykNxvStZ47JIeSeFzWjF2jwJcRTCE6cw\nW1P9to7fdXT5nZYeba5jZ93vmhHZDHNEaehwFcbYfxWYyiHuFKyurnD7YFeAIrThwH8ClFo+AZLd\n7O/Id4VFKNOmuXSQRxmitBkzkiXeitDnSEztPJXn33zePsxWhzHC6HJ9S+dIiGy2LsQ8pcNVGKOp\nHPIPQ2q16+8ouvlUoE9sLMlTp7JJVXlPVUmeOhVzbKzb7+qnZRcq+DbPzJdfOu8rIY6tE70/Yvam\n2X4Ls/UGkc3WhfQ0dDiGMfb/C8SVefZdc2wsptRUTA6htEpOjtZ7MJsxFxVppigdisNxrp4t4rkR\nmZxtb+KJ3+UwZQrExkqIY2tF74+I+jyK09ec9kuYrTeIbLYuRGnouHDuQn1ehglM0ZBa67yfopt3\npyzs9res1ysPvSNdfzy+rwA2k91bK9X+619rIws+/jjc+cMshq8YzgY2OJUWudBBQhzDEas/4r72\n9zHzq5nQ37LBhE15jDjsu+zvppI1TiebYCef+67sE99GGCFKw4JdGKOL8QKsKI7Lqako+fke/YZe\neZhXr7brdTge98KRIq7vnEniBBPdU3P45S+huhpG3pJNtw17KY08ZdfOk9tOyo0ZhsQZ45gaN9U+\nBNxh+NZZTwbGLOVI9oPZlLxRQkmnEjtTVRll4tsII2QQJgu2QZbM0P9DMFVD3EVIrav3Oeix9jA8\nyex2hZKZiWKJmNJPTvtlZKDk56Oq2hgff/87LFmbTu2jhc7nIIM0BRW+GtPaJpvg88GVfI3d8LAO\niHwGH015dkpPw4Len2GKhvwz9Q9xxWFfc2wspnvuaZKysGEyoYCdn8Pxd7Bst0ZUjRgBI0bAlxUd\n+czFvleuiu04mLA6sUFTIE2NYLLJJtiZpVK+SwkqhQEuwsN1iG8jPBClYSHKEGUXXmtFcbGvkpra\nPIWBzlSVmQmb628wp9+rqEAxm+1WRUdGuTzmji1GnnwSHn5YUy4GQ7OaKDQTXyXV2UJaHXAXYhto\nQq29gneI0kDrUpeeKWVACWy6ZP/g1s/rTVI+Q9fjMLnpcTgWObTZjtNKbA5H4xUjCUlnOH85l4cf\nzuLqVXjgAW0aPFgUSCDwVVLdqEGj+GzVZ1ROqLStCyZfhiNOvo0IiC6P5sYHbwx00wRfoIYBzTmN\ndRvWqYl3J6ooqBk9UFVQ56J9Ok5zMzJ812gH5mZk2H7Xk99ft2GdmnZnmmq80aiiYJsS705U1368\nTi0oUNXnnlPVfv1UddAgVZ03T1W//rrFmh92PLHmCTXj7Qz1juV3qOcrzwesHTb5nIbKGFQyUKNT\no9W5f5gbsDZ5wtw/zFWjb4x2ks11G9YFummCjqY8O1t9cp81oa//KojzvgCo7zCZ3CYBuiJrXBbd\nunejaoK9nbgkrYQ//2MxaWnwhz/Ad9/B0qVQVgYZGdr45/Pnw+HDvj6B8KIli/x5g10dNEsl28p7\nKtlxcEfA2uQJnxd/btczAkn0CxdavXnK6mQ0ldtnfSu6fVrELOWAkpPTqH/D0Uxl5yDVoXc4RkTA\nqFHa9N//DVu2wD/+AUOHwsCBcP/9cO+9MGCAy0O1WlqyyJ83ePI/DkZCtd1C47RqpWEbM8Phgak4\n7OdNLkazaCyiyqGwoZ3D0UyjyVSRkTB2rDb9+c9a8uA//wkjR0KfPpryuPdeSHZVLKuV0dJF/jzB\nnXxC8DuVvZVNIXRotUrD3ZgZisN+5thYTC3Yw9DjLqLKHc1JpmrbFiZM0KYlS2DrVk2BjB8P7dvX\nK5D09NbpRG/pIn+N4SSfQZrQ5w5J9AtfWm1ynzVhqv8qMJ2CuFJYXee8nzW5zp9Yh5F1LDdiRZ8n\n4utkKmsS4T//CR98ADU1mvK47z7NxBURIl4wXyXWBYpQSuhzhyT6BT9NeXaGyCPA9+h9Gfmntczv\nYEHJyUHJz9f8KDhXw82pqABL7kbWuCxSklNcHqcp9mODQcvxePVV+OYbWLtWK5g4Ywb07AmPPQar\nVsGlS14f2q8EiyO7qTgl9Fmc4CnJwZfQ5w5fy6YQHLRa85SrBCRFN+8P57evaKlkKoNBy/EYPBjm\nzoVDh2DdOvjLX2DqVLj5Zpg4EX70I+jXr1k/5XOCxZHdVMIlQS5czkOop9Uqjei9pxn7gYGO32td\nM8Vhu9+c3w1hMtmc4orDJn0kVfZP/ZNMlZAA2dnadOECfPyxpkTmzoXevesVyPDhgTdjBYMju6lY\nk00jD0RSe2d9meVQ8GU44i4R9UyvM+IQD1V8nCviFZs3b1aTkpLUa6+9Vl20aJHT9k2bNqkdO3ZU\nU1NT1dTUVPW3v/2ty+N4exrrNqxTJ3QxBiyRzxvmZmR41M5AJlNdvaqqW7eq6n/+p6omJ6tqjx6q\n+thjqrpypaqeD1xeXEiiTza1JvQZhxrV9LvSQzYxzpqI2m5kO0n2CzKaogIC+j44e/Zs3nzzTT75\n5BPeeOMNzp4967RPRkYGhYWFFBYW8sILL/jkdxetWERl+/CyqQYymSoyUjNVvfoq7N8P27fDDTfA\nW29pZqvRo+Hll+GLL6DOA9/Rz9f+nMycTO58507KqwKZcel/bMl8YPNlVE2soluXbiH7Vm5NRP3+\nju/t1kuyX2gSMPNUhSUqaMyYMQDcfvvt7Ny5k6ws+xtDbYHgLsfEI0U3H3S+DIfcDcVhs9VMVXHs\nYP2IbjoC4XDUm7EqK+Gzz2D9enjkESgthdtv10J7b78d4uOdv++r6rChSLgmxYXrebVGAqY0du/e\nTVJSkm05OTmZHTt22CkNg8HA9u3bSU1N5dZbb2XmzJkkJiY2+7e/3/oN3S2VbBWHbUHhy9DhKndD\n0e9gSfj7sodru32gHY7R0ZpyuP12LSP9yBHNF/Kvf8Hs2ZpunjBBUyKjRkFUVOg7sZtDuDqOw/W8\nWiNBHXKbnp7O0aNH2b17N8nJycyePbvZx8zNy6XzuQt2JUPCgT7d+5BYaFGoZmAjGNcYOXNWczgG\nC/36wRNPaDkgZ87A4sWaeevZZ6FrV015jDy2gh/2nMT6B/NCzondXEYNGkX0+mi7dYkFicyaEloO\ncEeyH8zW5NOMlqy4CaJXRXNjklS+DTUC1tMYPnw4zz77rG15//79TJgwwW6fDh062OYff/xxnn/+\neaqrq4mKchEuqyi2+czMTDIzM532sWbZ9ul4Gc4HNvvba3RmKsVFwt/FI0fJiB9Kx10dKT5XTNWE\nKqqoopDCoM3AbdtW83dYfR7nz0N+PmzcGMexnPcY+GvIzITbbtOm664L7+z03Lxclm9fTmVSJXwK\nGCC6IpqHpjwUdP87b8kal8Xuwt3MXzXf5nurpJLl25czPG94yJ9fqJCfn09+My0pAc0IT0tLY+HC\nhfTr148JEyawdetWunbtatt++vRpunfvjsFgYM2aNSxevJi8vDyn43ia1WjNss14G/JdVHkNRPa3\nt1jNVIqrbRkZfD4gqj6TWEcoZuCeOAGffqrVyNq4EWpr6xXIrbdC376BbqFvscsC168Pwf+dK8L9\n/EKRkBvudcGCBUyfPp2amhqys7Pp2rUrb775JgDTp09n5cqVLFmyhDZt2jBkyBBef/31Zv1exWdf\nkrHJfmS+cCPQDkdflu/o1QseekibVBVKSjTlkZsLzzwDHTrAmDHalJGhOeBDuScS6P9dSxPu59da\nCKjSyMjIoLi42G7d9OnTbfMzZ85k5syZPvu9npeqWXXa9RCuIUMjCX+dDhroHw+Hf2y/zV8Ox5aK\nfDIY4NprtWn6dE2JHDyolXr/5BOYM0fbT69EBg0KLSUS7s7icD+/1kKryQjPzcul5vsa27Ki2/Zt\nTAwDhw8PnjDbBnAcd0PRb6yogAq446qRw1QFJAPXX5FPBoOmFAYNqlci332nKZHNm+GPf9Sy1m+5\nRVMit9wCQ4ZofpRgJDcvl1OnT8E+4Ef160MxC9wdrrLDoy5Hcaa3ZIeHEq1CaTTmAFeGDw96X4Y3\nXNvrWtIe2EekAAAgAElEQVR2teVA2QGq76j2q0M8UOU7DAbNPJWQANOmaeuOHdNyRDZv1kYvNJu1\nwaduukmbRo2CLl381kS3WOWzZKTlYfopGC8bSe6dzEtPvhQ2D1PrecxZMMcWrFFNdVAHawjOtIrS\n6Ddd24t2V08SdwpWuzCrhoIDXI++dHqOKzNVbCwVRgOF8eVOZqrW7HQsL4edO7WM9c8/1+Z79rRX\nIoMG+b9uVmtzELe28w1mQs4R7i+6X7rC6lD3ZejwKOGvAjKN4Bgk1pDTMdTHoGiMuDgtD2T8eG25\ntra+7MmWLVoZlLIyuPHGeiUybJj2vZaktTmIW9v5hhutQmkYqPeGKrr1+9pGknLT6JDwZfiKhpyO\nra18R2Sk5ucYMgR+8Qtt3ZkzWi9k+3aYNw+KirQoruHDtXFGhg+H1FQt091XtDYHcWs733CjVSiN\n2JhYoNyppzEraVBImaWccDGmuJ7oS0YwV3lcLr01l++w0r073H23NgFcvQrFxdpohrt2wbJl2nJS\nkqZArMokORnaNOFuspZBNx40UjWh/k07nBzgjki59NAm7H0auXm5/HnK/XxU5tz1DTVfhjvcjSl+\nMCqK3R1qOPRkfWnZxMJEFs5c6PLGLK8qD9kxKPxJVZXWA9m9u16ZHDum9UBGjNDGVU9P1zLYIyPd\nH8fmALc+PA+FpwPcFbl5uXYOcSsNyafge5ri0wh7pXHTtb3ofuxkWDjA3dFQlnhmf9j8qP06cTj6\nnooKrfT77t1QUACFhXDyJKSkQFqapkTS0rRlo8UK09odwq39/IOBFnGEX7p0iejoaCIjIzl9+jQl\nJSXcdNNNTW6kv+l+6Qqp1c5O8H1tI0kJF1+GLuHPE8Th6HtiY+tLnFi5cEHrkRQWwrZt8Oc/a+Ou\nDxyoKZCS49VBU84+EIhDPDRpVGmMGTOGrVu3cvXqVUaOHElSUhJJSUksWLDAH+1rNgYMLt/A7+3c\n0RaFFOroE/4Uh21xpyDjbTDH1WeJi8PRP3TsWJ+hbqWqCvbt0xTJpqWuHcLlpUYOHtSy35viJwkV\nxCEemjQqknV1dcTExPDnP/+Zxx57jBdffJERI0b4o23NxjELXE/v7r393Br/oegXqoHDkFkFhzeK\nwzHQGI1aGO/p87l07VLK6Y/a2Y1o1ykvEWPkLLKy4NQpzeE+eLA2DRmiffboEVrlUdxhc4i38Nj2\ngm9pVGl06dKFjRs3smzZMv7v//4PgMrKyka+FXgev/02ThRsJ+qK665ul85BkArsRyKuGOA2NejL\npbcGbA7wES4ywOfWO8AvXtTySL76SpvWrdM+DQZ7RZKSoiUlduwY0NPyGimXHpo0qjRef/11FixY\nwM9+9jMSEhIoKSlh7Nix/mhbszi3t4CPyqrCJqGvUUwmXqi7ytdf7ITKq06b6zrbO7us4zPLjel/\nnMYBN0EVVXQ7bD8OeIcOWqLhjboXb1XVeiB792oKZMsW+Mtf4OuvtSTEQYOgzbFp9K01c+zsQaov\nnqObWsfp2lq6AaWACnS3zHfTfUa0bYsxJgaMRkxJSVpIdwubcBsa215kMzhpVGl888035OgEJzEx\nkdGjR7dkm3yCSv1DUtGtD9eEPscsccVhuyvfhjgcA0NzHMAGg1b6pGfP+sx2gLlTp1Hw4Xo6bq+i\npvIS/6vW2mRAcZjcraOmhqKKCuIqKjCfPk3V1q1MW7++RRWIOMNDj0aVxiuvvMJPfvKTRtcFG9Ys\ncMVh/b2dO4ZFmK0nKPoFq2+D+tIi4nAMDL50AFvrkB0uKmKopQ6Z0sR2KQ5TUW0txtOn6xXI6tVa\nL2TCBJ8pEHGGhx5ulcZHH33Ehx9+yPHjx8nOzrbF8paWltKrVy+/NbAptFYHONBoljhVaOOHi0M8\nYIwaNIrPVn1mZ5bxNgO8saKVviAVXU+kttZS06wC8+rVWo/WB70PyQ4PPdwqjV69ejF06FD+9a9/\nMXToUJvSMJlMjBo1ym8N9JZQdYD7qlig3kyluMgSjyvFMkiTOMQDQXPGAbcqiqKDBzGePcs/amv9\n5rNTqO/BmCoqYPNmDmwv4vHPMsFk4ulFOQwYADEx3h3XVbl0CdYIbtwqjRtuuIEbbriBn/70p7QN\n1pFrXKB3gCu69cHuy2ipYoGK44o6yCyvN1GJ09G/ODnB0SKGdhzc0fiXzWYUN5n/gSC5pgIObWbf\n4SIevGka33yfQ1xc/bgmjlPPnq7LzmeNy2LRikUUjii0Wy+yGZy4VRqDBw92+yWDwcDevXtbpEHN\nxeoAVxzW39O5fVD7MgJZLFCcjv6jKY5fvSnKUxSgCLgE/AQtQsr6qbpY19XjI+P0QpZSW0F7w2ru\nGZHJle4m7srO4dAhOHRIG4rXOl9err2zuVIol2vEIR4quFUaa9eu9Wc7fIa+DLqeCPw8so6X+HzE\nOy9Ki4jT0X946/hVpk3DvHq1R36LImCaZb4qMpK49u2J89BxrUybhmIxfU2rqqLq0iWSamsb/g4O\nJqstmymNLWJjaSaYTMxz+M3Ll7XRE61K5NAh+PRTKCmBry9FwUDn3yg/Y2TnTujfX6tA7O8BsgRn\n3CoNk4MZZ+fOnRgMhqDPBu/TvQ+cLndaH+wO8DhjnE/Hr/C0tEib/uFbgjsYsXP8WnDlBNf3LkyN\nKH7F8pmKNmqjKTXVaye1477KtGkUrV9vUyA0okCsWP0d5qIiTRHpjnvNNXD99drkyLoN2cxaXIJ5\nWP11id2QSEy7WTz5JBw+rNXy6ttXUyD9+mmf+vk+fSDKtU4WfEijIbf5+fk88cQT/OAHPwDg22+/\n5a9//SsZGRkt3jhvUaZN41zJIZfbgtUB7i8U/YIl/Pa2sgjO9wuxNOIQJjcvl0UrFnG5/DKxa2Lp\n27svvbv2ZtaTs2x2e2+iohy3mWNjMd1zj0/CYfXHsPZCGlJgikN7TF5GWf3o9iwMBlj87mKKSooo\nryinb79oOnRZRPaDmt/jyhU4elRTIIcPw5EjWk/lyBFt+cQJ6NxZUx69ezt/WuevuaZ516a106jS\neO2111i3bh3XXXcdoCX7PfXUU0GpNMoK9jDwyhWnm+nbmBgGBqkDvEVpJPy2tksdhUMlSsUf2I2d\nYdLWdS3syqwps+yveyPObgXNDBWHZoIytm9vy+A2tVACni0iz2Iqa8jkqeAcZWUuKvJIeVivwy8X\n/ZLqW6vZZ/kreaPEtv2667RxSlxRW6tlyx8/ro1vYv3cv99+OSrKvUKxfnbpEh71vVqCRsfTuOmm\nm/joo4+IjY0FoKKigjvuuIPt27f7pYGeYK0J/+P4TqxyYZq6t0cn/nnqXIv9frCPre0u/FY/1oaM\nYdCyeDJ2hKP/wjqBc68CAjMejLuekOIwucKTnlBLj7GhqnD+vL0S0X9a569cgfh4LeIrPt5+Xv/Z\nvTu0a9fsZgWMFhlPY+rUqdxxxx3cf//9qKrKqlWrmDZtWlPb2KLoS4foqaPO5XpfESpjaysOy3rf\nRlWqRKm0JA1FTXniv1Acls2xsU5+R3+g73V4YrKyo6ICxWxu8PgtXVbEYNBMWJ07a8Ue3XHlitZr\nOXVKG0zL+rlrV/3yqVPamPJxcQ0rFutnx47h0XvxaBCmV199lW3btgGwZMmSBsNxA0mgIqdCaWxt\nRb+gKy0iEVQtS4NRU4c8z7+wOrpbyhTlKZ6arBSH5cZMVcFSViQmpj4cuCFqa6GszF6xnDql+Vh2\n7Khfd/IkfP+91jPp1k37tE76Zf28t4mS/qJRpXHx4kVmzJhBp06dmDx5Mt27d/dHu7wmkKVDfB4u\n62sa8W1ElBk4c1bKNrQUuXm5lJ4pJepgFNUT6t+kU95qz8BOxzEfOerye4puPliUhSNKTo5dr8OV\nfCl47ucItTE2IiPrH/I33NDwvpWVUFqq9U6sn9apuLh+3rotMtK9QunWTZu6dIGuXbXPDh3805Px\neIzwL7/8kvfee4+VK1fSp08fNm7c2NJt8xiDwcCELkbOV1URXw2GOi2B6WqbSAZcN4gu6UOD6kYL\nFNYQXEeKoqAoCdqYElk4c6EoDh9i5wA3A4fqx8646bvvWfzVPp/4AoIBRzObQtP8HMp8xW6MDYDE\nwtYlm6oKly7ZKxdHRXP2rNbLsX5WV9srEf2n47rrrtPMai3i07DSvXt34uPj6dKlC6WlpV5fhJbm\nozJnm+e9nTqyeO9XAWhNcKM4rqjWSotslrINPsfV2Bk9VlXRf+d3XKxy9rUpLo6hpKYGvcIAz0xW\nCo2H5soYG1qPoUMHbWrMRGalutpeieg/Dx+GgoL6dS+9BBMmNK1tjSqNv/zlL7z33nucOXOGSZMm\n8dZbb5GcnNy0X/MzLe0AD0ekbINvceXYNZXDP0+fd60gdPP6RL1QwlOTlQ2Lycq6TsbYaBpRUdCr\nlza1JI0qjaNHj7JgwQJSU1NbtiUtQLCXDvE7HpQWEYe4b3F07PZfpUWtOaLo5oPVf+ENjoOCudzH\nYdnq5/j+2DcwwHl/kc3gwKNBmEIVTxzgwZ5j4UsaKy0yYZGRXkNdBxMITcOxbIipHFIdXqQVh+8o\nqalBXVzTK3RBGI2VQ7E6yQfExHBxaXv2PX7Jts3b8UaElsNjn0Yo4knpkFDJsWgJFP1CNVBdxY/3\nFkgUlY/pWNORaxe1oX+NSuwVFXRmU0W3X6iaoxqiKX6OgVeuADEMXNKJksha9na6gDHByKIViwCp\nXBBowkZpKLr5b2NiGDh8uEc3XyjlWPiERsJvzxvLpayIj8jNy+XXjz9Al4hL9LsMq6vt5VRx2D+s\nehgOeO3nuHIFrlzhji5G9k6C/ZY/fUkRITB4HHIbzBgMBrtccG/KhpRXlQd3jkULYS0tojisL4qC\n8nioadOLbf8+HoimhQ3jHx1P9aYN5B/2TYmNcMGb0FyrPJrj4PCPtXVS8sZ3tGjIbSjhTdSUr0uS\nhyKKfsGSJX5Pj8uBaUwYUfHZl8Q34vS2rQuRsFpf4ImT3EqqRR6LTgGrNMUhUVSBJaDhRVu2bGHQ\noEEMHDiQxYsXu9znN7/5DQkJCQwdOpSDBw96dFyJmmo+cg2bT89L1U5Ob7B/q54WG4uSkRFWfgyP\nMZkwWwqhOqI4LKdWQ+pBrVZazdZvW7xpgnsC2tOYPXs2b775Jv3792f8+PFMmTKFrl3rB57ctWsX\nn332GV988QUff/wxzzzzDOvWrWv0uME+4FJQYPFtfLt7t2Y/dkCuYfNxNSCY4rBPOPsxGsNrP4el\n1zFrcGc/tVBwRcCURoVFQMaMGQPA7bffzs6dO8nKqndw7dy5k/vvv5/OnTszZcoUXnjhBbfH+3EE\nRBgiaNuhA0npQ1u28WGA3kTgqmz6uZJDTiOvCZ6hTJtGWcEeTh4sRh+/p+jmwzFSqil4UjVXcfjO\nyYPFzBoyWMoDeYnVl9RcAqY0du/eTVJSkm05OTmZHTt22CmNXbt28fDDD9uWu3XrRklJCYmJiU7H\nW1UHUMesvn1FkJqA4rjiyhVmFewJQEtCn7KCPbaaUuCmrHkrcXp7ijd+jpSaWvhqH9+WHNLMfHId\nG8RxDBQ985pwvKB2hKuq6uTZNzRSxvH4GYn48QqTiX3bt0KN8xjQci29w3pznjxYXL/O1X6tyOnt\nNQ1ULVBwzufwZkjZ1oY3Qwd7Q8CUxvDhw3n22Wdty/v372eCQwWtkSNHcuDAAcaPHw9AaWkpCW6q\ndymWzwOXrpCfn09mZmYLtDr8UHJyuGf9ajjtLFQR5y7IDekNLoZq1c/vaxtJyk2jW71JqiF8XWq9\ntWFVFEUHD2I8e5Z/1NbayWC+ZWoOAVMa1uFjt2zZQr9+/cjLy2Pu3Ll2+4wcOZKnn36aRx55hI8/\n/phBgwa5PZ5i+dzbPkYUhpfoB69S9Btqal2WHBGcUaZN0x5y+nUO+9zbuWOrdXp7g6OfY9/2rZpJ\nynE/RHlY8bRXkWmZrISceWrBggVMnz6dmpoasrOz6dq1K2+++SYA06dPZ8SIEYwePZphw4bRuXNn\nli9f3ugxJerHe1xF+QheYjY3WltJZNM7rA/9WUMGw1f7PPqOnfJoJYEcjmPLtzQBVRoZGRkUFxfb\nrZs+fbrd8quvvsqrr77a6LHu7dGJ3t1700Uip7ymS/pQZgEnDhyA2jonwft29+5W+fbmCXbZzfr1\nuvmvIiPolZwsstlEuqQP5eA332oDRrhBofFxOsINT8aWd/qObr4oCi2M2UuC2hHuDZ6WDRGcsd5Q\nP47vZOtxKPodrlwRM5U7GvFjANzbNVYGA2sGSk4ON23dQObVk1pZ+QYedArhbbJSpk2jaP164qqq\nqLp0ycln4fZ7unl9aRa+9L4NYaM0hOajEvJlyPyG/i3Pbr3DfkVRcKp9O381K2xpN/oHbB5wkv6r\ntFEmG1MeesLBZKWXt1Rdva5Gv+ewbB3a2VrHS5SG0CzOtI8h01hB3ClQXNyQoXzT+RwPehgAmfEQ\nNyb0BjALNqyDWR3+MRwGm/LoeiLSpZMcwsNk1ZSwWQUoAuKAqshIjO3bg9FIBdUUxZfXK4wmIkpD\nsPH8kr9qZdGLSuCwi4dgRQWKDzJKQx1XkVLg2gRQVtueV6fI4EHNxXEwq8M/hjYFiST+oD/mXXsa\nHI1SIbRMVo2Fzbr9nm4+FS2JNEmXRJqbl8vsP88GSprVPlEagg3rGAVLH34YOB/YxgQzLiKlFIdd\nftgukos33MCrT74kYz/4AOs1XPzuYo6dPMax0mNE94rmWO829BkxFOX72kaHMtYTbCarpvoqXOFq\nuODcvFwWrViEscZIl9wu9IzvSe+uvfmYj70+vigNwY6scVn8c0gaezdtgquq23Gcg/ENraXxJFKq\n3slYSxuDZw8wwTOsimP2G7OpmFhBBRXsYx+J5xNZ+OxCeOd9t/WrrCjU/7+KgLiKCg4uX8601avB\naMSUlORX2W6qr8L2fd28u7Hlc/Nymf3GbK2XZtLWxRXGMWvKLD5+W5SG4AOO9W5DdW9VMx7jIMSW\nNzTF+Wvhjwd+jMx42PyodamExe8ulp6GD1m0YpHNRGWlJE27zutztIGZGhpa1oqC7n9XW0tRRQVx\nFRWYT5+mautWpq1f32IKpLm9iiJgmmVe77MwTZjgsq0NXbOmIEpDcKJabULwditEcVguirKEMeqQ\nAYN8izvZ1F9nT0qR6FEcpqLaWoynT9crEGsvxM1DucFj6xTEsStX6FpXR11tLanQ5F6F1V9hrZLc\nWJs8uWbeIEpDcCLKEMXXcVq5AWtoo+KwT2syU7kKr1Vc7JcZj1NkijHC2JJNa3VYo6gccbzOnpRc\nd4fdA93SC7lUUcGVZcsYu2wZ3YBSQAW6W+bdrXM8nu24XuC4v7dVkj29Zp4iw7MJTmQ/mE0bUyKb\nx0K5Tt4U3ZRTUaGNw9EaoqksZin9Q0fRTT+NieFHna7h6GX72ymxIJFZEjnlU7IfzCax0DI0ghnY\nCMa1Rs6cPUNuXq7T/kpODkp+PqZ77nE7SmBDKGgP/dHAe0CG7jPTg3XJXv9i/e8WoZ3iwchIzLGx\nmHv0gIwMrxRGbl4upWdKafeRfa5Qc2RTehqCE1njsthduJv5q+ZDp0q4EOgWBQ5PChHeEV3H+llV\n2h3+KRgvG0nuncxLEjnlc6zXc86CORw4d4DqCdVUUUUhhVq4uG4fPd6arAKBo68izuKrSGqCWQx0\nDvARJT6VTVEagks+L/6cygmVmFfVm6laZcKfQ3itot8UG0uF0UBxvKXYo0mbqqii2+FuojBaiKxx\nWSxasYjqEfYCaXXuurvujiYrax4Eta6TA/2FYvn01lfRGHYOcBM+k01RGoJLrM4zawZuxtu0qoQ/\nV+G1iuM+qankm+DwAOeR5sQB3rI0x7mrfxjrFcg0SzRTkh+UiLcRUE3B1w5wK6I0BJe4c561GlyE\n17rC105GwTN8dd0dH9DWaCerAvFFL8SqII4BPwEiIiMxRkRA584tmhfSUrIpSkNwiWPZBnMc7D1m\ngNrwTvjztBChOTYWk8lE9oOTOLjoIEeGHbFtSyxIZNaT4gBvSRzlE3xz3d31Qi6dO8cDdXWcrq3l\nJ9RHSlnn3a3TK4jRfk4cbKlrJEpDcIld2YZTxzjV7hTVsZVw7goQxgl/HhYiVFJTGf7TSZpt/UI1\nUauiGNhvIL279mbWk7PEn9HC6OWzqKSIykuVRPeOZtGKRXbbm0OovwABdKzpSKd1nVAjVRJ6JPgk\nOEOUhuAWfdmGsqwyLr8NhPGwJZ4UIrQ6Ko+2i2S5Q2mGysJKZk0RheEv9PJ5+tbT7LP8lbxRYre9\nNWIXOWWhotA3EWMGVVVDfhAFg8FAGJxGUDL+0fFsMG0AtHLUJstYBqtdJfz5MPIjECiZmbYek3Vy\n2icjAyU/3+666Bl/eDzr/9/6lmymoEP+D67x9Lo05dkpPQ2hQfQRGI6RVBAeZipPChHqFSK0XGSK\n4B3yf3BNS14XURpCgzQWRaW4WBdyuRse+DGU1FSU/HzbskRNBQfyf3BNS14XURpCg9hFYJiBEjh6\nMYIfdY4mtkpl4JUrIZu74W2klJ5Rg0bx2arPqJxQaVsnUVP+xyafnUq0sYUiILo8mhsfvDHQTQsY\n1tIhbQ604eqdV23rfSWfojSEBrEr21B2gOo7qjl0Wx2HuMyExUbQgqlCMwzXi0gpx/EJlm9fTmVS\nJXwKGCC6IpqHpjzUqp2vgUBf8saqwCupZPn25QzPG97q/h8tVTpEjygNoVHclW2obF8FZfXLin5j\nkPs3vImUwqGX4VSeAe1BtePgjpZoqtAI1pI3ehorKRKutFTpED2iNASPcOVYM8fBvhORUFOfNas4\n7hNkPQ47p3cjQ7Y6+jGsiPM1uJD/Rz3+uBaiNASPcOVYO/xjSD/VEU7bjyeu6BeCrcfhpjyIftld\nD8OKOF+DC/l/1OOPayFKQ/AIdw7Hut79UJKGOJWbVhy+H+gehzunN3jew4B6J2PkgUhq76zvYYkT\nPHC4CtYwXjFyppc2xkZrMVFZZTOqOIrqO+p7HL6WTVEagke4czjuK7zEEzN/B797DTbbV3tV9AuB\n7nF40MMA15FSVvzhZBS8Rx+ssb9sP9/f8b1HY2yEE/6UTckIFzymoSzTG+vibW/yORUVbpWDt0NV\n+gJl2jTMq1fb2qWfnPa1ZHy7QrKPg5vW/P9p6rlLRrjQojTkZLMNcGMpxWFFcdzZjzkcDTm9wTs/\nBojDNdhpzf8ff567KA3BYzxysplMKGD3oFYc9m9p/4ZeWbjq9eiXrcrC5EFbxOEa3LTm/48/zz3C\n50cUwpbsB7NJLEy0W+c4QL2Sk4OSn6+9tetQdPMmi3/DvHo1Smam9pD3JRb/hbvehX4yWZzenigv\nT85fCByt+f/jz3OXnobgMfoxDI6cOELxsWLaDWjnegwDk8kposoRm/LwYa0qd0l74J3T25HcvFwW\nrViE8XsjXXK70DO+p4ydEWQ4jQFz9hTR8b4dYyOYiamOoePajkS0ifDZ2BmuEKUheIV+DAMmQbHl\nz3EMAyUnx8m/YUVxXOEDP4c3/gvbOofyIO6wRaboxs6IK4yTsTOCEJt8/lkbA6aMsrAfY8Mmnzf6\nfuwMV4jSELzGrlSBBZdlG3T+Dcceh2L5LALigKqtW5kWFwdGo1fjJjfmv3D8PfDM6a3H4/MVgoJF\nKxZRkt56/l/+lk9RGoLXeBqp4S6iyrYd3cO8tlZTLBUVcPp0gyYrq6IoOngQ49mz/KO21itl4YnT\nW09rjsoJRVrb/8vf5ytKQ/AaryM1XERUOaJg3/u4VFHBlWXLGLtsGd2AUkAFulv2eQ/XJif98fQ0\nJz+kNUflhCKt7f/l7/MNSPTUxYsXufvuu+nXrx/33HMPly5dcrmfyWRiyJAhpKWlMWLECD+3UnCH\nXaSGGdgIxrVGzpzVyjY4YououucezLGxDR5bAVKB0WiKIUP3mWmZT26kfYqLyeSh/8IVowaNwrje\n/gZsLVE5oYhNPs3ARmATRK+K5sak8Btjw1o6xJBrsFvfkvIZEKWxZMkS+vXrx7fffkufPn34n//5\nH5f7GQwG8vPzKSwsZNeuXX5upeCOrHFZLJy5kLRdaRgPGuE2qJpYReFQrWyDK8UBmvIw3XMPSkZG\no8qjOSi6aVpsLEpGhsf+C0esY2dUJVVpY2dsgujV0Tx0s4ydEaxkjcvioZseIvpgNNwGjIXKH2tj\nbLiTzVDE6gAvHFGIer2qlQ5ZayS9IJ2FTy5sMfkMiNLYtWsXjz/+OFFRUTz22GPs3LnT7b5SHiQ4\nyRqXRbfu3aiaYG83tTrg3OEuj8MXKLp5c2wsZGRoSsrDPAxX2JyMJuBWtAfQPTJ2RrDT0Bgb4YLT\n2Bm3ai9v3br4buwMVwTEp7F7926SkpIASEpKctuLMBgM3HrrrQwYMIDHHnuMu+66y5/NFBqhWQ44\ni5/D6symtraxb7hFcVj2ZX2r1uZUDRdaw/8tUOfYYkpj3LhxnDp1ymn97373O497D9u2baNnz54U\nFxczceJERowYQXx8vMt9FUWxzWdmZpKZmdmUZgteYHPAmbGVS6cOLnS40Oh39Q90Zdo0FGvZ8gaS\nAe2+jy5cNzISY/v2tnBdb6Oj3JGbl8u+/ftggPO2cHWqhgt2zmEzNvncd2VfWJRLb6ps5ufnk++m\nIKenBKTK7X333ccLL7xAWloae/bs4ZVXXmHlypUNfufpp59m0KBBPPHEE07bpMptYMjNy+VnL/+M\nU+opzXZsIX5bPG89+5bXN6Y+lPbSuXN0ravjdG2tU/RURGQkRERgjInRFMWECT6vYWVLmLKOH6I7\nv8SCxBa1GQvNp8H/X2EiC2eG7v/Pl7LZlGdnQJTG/PnzOXr0KPPnz+eZZ55hwIABPPPMM3b7XLly\nhdraWjp06EBpaSmZmZmsX7+evn37Oh1PlEbgSL8rncKhhU7rQ70ctV2paTNwCDBAlytdWPa7ZSH7\nwAuMX1wAAA4RSURBVGlN5OblMvX5qZRllTltC2X59KVsNuXZGRBH+IwZMzhy5AjXXXcdx48f5xe/\n+AUAJ06cICtLO+FTp05xyy23kJqaygMPPMCvfvUrlwpDCCwdO3d0uT7Ubcd29mITNid4SnKKKIwQ\nIWtcFinJKS63hbJ8Blo2A+II79ChA//617+c1vfq1YvcXC0kLiEhgSI3heeE4CFcE6nC9bxaG+H4\nfwz0OUlpdKFZeJvoFwpYE6bafdTObr0k9IUe4SifowaNInp9tN06f8qmlBERmoV+fObic8VUTagK\n6fGZZRzw8EIvn3vP7qX2ztqQl8/l25dTmVSpJZsaILoimoem+C/ZVMYIF3xCuIzPHC7nIdgTLv9X\nX59HyDjChfAjXJKpwuU8BHvC5f8aDOch5inBJ4RLMtWFcxckmS8MaU4iarAQLMmm0tMQfIJdZVFr\nwtFYKMsqa7CIYTCRm5fLyYqTWmVUHfFb48UBHuJkP5hN/KfxdrLJbXCy5mTIyObsN2ZTllLmJJ/+\nDtAQn4bgM0I9mcpmLzZjS5hChbT2aRTkFgS2cUKzCeVE1JZKNm3Ks1PMU4LPyBqXRco7KWzGeZS+\nULAd2+zFJmxjgQN0/M51AqMQWoRyIqpTQp9Jm035zv/JpmKeEnxKoBOPmkMot11onFD+/wZT20Vp\nCD4lVJOprAl9MkJf+BLqshksyabi0xB8Tm5eLnMWzOGrs19x9c6rtvXBWl3UltCXVmKzF0tCX3hi\nlU1rIqqV1iqbIVPl1teI0gg+QimZKpTaKjSfUPp/t3RbJblPCBqCIQnJU0KprULzCaX/dzC2VaKn\nhBYhVJKpgiVhSvAfoZSIGozJptLTEFqEUEimCqaEKcF/hEoiarAmm4pPQ2gxgj2ZSkbna72EQiKq\nP5JNJblPCCrskqnM2MwAuy7vCgozwImyE/VJfCYCmjAl+Be7RFQzdibUY+2PBbZxaEptV/Guerk0\n1W8LdLKpmKeEFsPJr2ExA5z/0fmAmwFy83IpOVLicpv4MloHUYYoJ9nkNjh0/lDAZXP2G7Mpb1fu\ncnug5VOUhtBi2GzH1ptSR0laCYvfXRyQdgEsWrGIyrRKJ3tx9Ppo8WW0ErIfzCa6MNpJNisnVAZc\nNkvSSiCRoPS1iXlKaDGsJp6H5zzMec47bQ9k2GC1Wl0flWIZAQ0VEjoliGmqlZA1LovEfonsY5/T\ntoDLJtSbpCzy2elyJxb+PvAJiNLTEFqUrHFZDB80vH6FGe3taRPsO7AvIGYAW5gtaDfmrWimiVuh\nT3wfv7dHCBy9uvSqXzATXLIJdvI5YvCIgCsMEKUh+IFgCnGUMFtBj8im90jIreAXgiXEUcJsBUda\ns2xKGREhaMkal0VKcoq2YMZmBmAjHDvlnxBHWxijFRO2rn9KsoTZtlbsZBPs5HPXV7v81ts4UXai\nfsFE0MqmKA3BbwQyxDHYwxiFwBLo8PBQCgEXpSH4jUCGOAZ7GKMQWAIdHh5KIeASciv4DacQRzN+\nyxK3ZX+bLCuCLIxRCCxO4eFm/JYlbjOb3mFZEeQh4NLTEPyKLcTRjN/MAE5dfxNBF8YoBB5beLgZ\nv5lQncymJoI+BFyUhuBXXJoBzMBGKCkvYerzU316c+bm5TL1v6aGTNdfCCxOJlQzsBEqoypbTDZD\nzWwq5inBr7g1A1hu0jK0+Hj9vk3FFvd+TZmTWSpYu/5CYLEzoZrxj2xCSJlNpach+B27LPEWdDza\nnN91lhUmgr7rLwQemwnVn7IJIWM2FaUhBASbmcoqgWZ8mrthl5MRQl1/IfA4ySb4PHfDlpMRgrIp\nSkMICFnjslg4cyFdrnSxNwNYiggeOHaA9LvSm3RzKvMVJr04yd65mIjW9d8EXXK7sPDJ4Oz6C4HH\nTjahXj4TgTo4f815Jj07CWW+4vWxc/NySc9KZ/+/92srTIScbEoZESGg5OblMunZSVT+uNLJhgyQ\nWJjIwpme30SNHq8gMehvSiE4sPodSs5ZHNUOshS9Ppr3X3rfK9n05fF8QVOenaI0hIAz+K7B7Bu6\nT+um66NWLHHyntbesUajlF1TpvktrMex1PDpdLkTf//930VhCB6Tm5erBW20O+8b2fxRmWaCHYvT\nMK7XX3M9+z50LtPekoRM7an333+f66+/nsjISAoK3I91u2XLFgYNGsTAgQNZvDhwg6IILYvN8aj3\nb+jMAWUxZQ2aA6xd/vtfvF9TGCHoXBSCE1vQhqNsWkypZcYy7v/N/Q2aUq3mUlukVIgHZgREaQwe\nPJhVq1YxZsyYBvebPXs2b775Jp988glvvPEGZ8+e9VMLWy/5+fl+/02b49F6M1kVhu7mrOxYyUvL\nX3K6Oa03ZOHFQqomVGnHcOFcDFRORiCuZzgTKPmMLo/WFqwyacYmp1UxVRReKHR6sbG+zLyU8xKV\nEyrr5TsEnd96AqI0kpKS+MEPftDgPhUVFQCMGTOG/v37c/vtt7Nz505/NK9VE4ib0up4TOuQhnG9\nUZNKx5vzNlCHqhQeK2Ri9kSMyUZikmKYlzNPuyGtkmxVNjrnYvTqaJ778XMB6WWI0vAtgZLP5x58\njuj10fVy5ubFZt5b84hJiiE6KZqJv55I4cVC1O4W849VWZiwyadxrZH0gvSQ8rMFbfTU7t27SUpK\nsi0nJyezY8eOALZIaEmyxmVRkFvAypdWalEr+pvTqjy+BNqDeqNKdddqKrtXQnfLfvoufyJ2YxG8\nP/99lOcUv52LEH4ozym8/9L79RFVrl5sEoH2UNm9kqruVah3qbbaVYB9pNR30KWyCytfWcmef+0J\nGYUBLag0xo0bx+DBg52mtWvXttRPCmFA1rgslv1uWb05QK882qPdpNabVX9D6rv8JuBWSIxNlIGV\nBJ9hlU2bKdXxxUYvo9ZtjuZSE3ArRFdHh65sqgEkMzNT3bNnj8tt5eXlampqqm35ySefVNetW+dy\n38TERBWQSSaZZJLJiykxMdHr53bAa0+pbsK9YmNjAS2Cql+/fuTl5TF37lyX+/773/9usfYJgiAI\n9QTEp7Fq1Sr69u3Ljh07yMrK4o47tELyJ06cICurvru2YMECpk+fzg9/+EN++ctf0rVr10A0VxAE\nQbAQFsl9giAIgn8I2ugpRzxJ9PvNb35DQkICQ4cO5eDBg35uYWjR2PXMz88nNjaWtLQ00tLSePnl\nlwPQytDgscceo0ePHgwePNjtPiKbntPY9RTZ9JyjR48yduxYrr/+ejIzM1mxYoXL/byST6+9IAEi\nNTVV3bx5s2o2m9XrrrtOLS0ttdu+c+dO9eabb1bLysrUFStWqFlZWQFqaWjQ2PXctGmTOnHixAC1\nLrTYsmWLWlBQoKakpLjcLrLpHY1dT5FNzzl58qRaWFioqqqqlpaWqgMGDFAvXLhgt4+38hkSPQ1P\nEv127tzJ/fffT+fOnZkyZQrFxcWBaGpI4GnipCqWS4+45ZZb6NSpk9vtIpve0dj1BJFNT4mPjyc1\nNRWArl27cv311/PFF1/Y7eOtfIaE0vAk0W/Xrl0kJyfblrt160ZJSQmCM55cT4PBwPbt20lNTeXp\np5+Wa9kMRDZ9i8hm0/j3v//N/v37GTFihN16b+UzJJSGJ6iq6vT2YTAYAtSa0Cc9PZ2jR4+ye/du\nkpOTmT17dqCbFLKIbPoWkU3vuXjxIpMnT+ZPf/oT11xzjd02b+UzJJTG8OHD7Zwz+/fv58Ybb7Tb\nZ+TIkRw4cMC2XFpaSkJCgt/aGEp4cj07dOhATEwMbdu25fHHH2f37t1UV1f7u6lhgcimbxHZ9I6a\nmhruu+8+Hn74Ye6++26n7d7KZ0goDX2in9lsJi8vj5EjR9rtM3LkSD744APKyspYsWIFgwYNCkRT\nQwJPrufp06dtbx9r165lyJAhREVF+b2t4YDIpm8R2fQcVVV5/PHHSUlJ4amnnnK5j7fyGfCMcE+x\nJvrV1NSQnZ1N165defPNNwGYPn06I0aMYPTo0QwbNozOnTuzfPnyALc4uGnseq5cuZIlS5bQpk0b\nhgwZwuuvvx7gFgcvU6ZMYfPmzZw9e5a+ffsyb948ampqAJHNptDY9RTZ9Jxt27axfPlyhgwZQlpa\nGgC///3vOXLkCNA0+ZTkPkEQBMFjQsI8JQiCIAQHojQEQRAEjxGlIQiCIHiMKA1BEATBY0RpCIIg\nCB4jSkMQBEHwGFEaguAlFRUVLFmyBICTJ08yadKkALdIEPyH5GkIgpeYzWYmTpzIV199FeimCILf\nkZ6GIHjJr3/9a0pKSkhLS+MnP/mJbbCgnJwcJk+ezO23305CQgLLli1jyZIlDBkyhClTpnDx4kUA\njh8/zrPPPsuoUaOYOnUq3333XSBPRxC8QpSGIHjJH/7wBxITEyksLOS1116z27ZlyxaWL1/Opk2b\nmDFjBufOnWPv3r1ER0ezYcMGAF588UUeeOABPv/8cyZPnsz8+fMDcRqC0CRCpvaUIAQLeouuo3X3\nhz/8Id27dwegU6dOTJkyBYBRo0bx+eefc/fdd/Phhx9SUFDgvwYLgg8RpSEIPiQuLs42365dO9ty\nu3btqK6upq6ujoiICHbs2CGVWYWQRMxTguAlPXr04MKFC159x9ojadeuHXfeeSdLliyhtrYWVVXZ\nu3dvSzRTEFoEURqC4CXR0dFMnjyZ9PR0nnvuOdsoZwaDwW7EM8d56/K8efM4deoUw4YNIyUlhTVr\n1vj3BAShGUjIrSAIguAx0tMQBEEQPEaUhiAIguAxojQEQRAEjxGlIQiCIHiMKA1BEATBY0RpCIIg\nCB4jSkMQBEHwGFEagiAIgsf8f6/NeKkjAey4AAAAAElFTkSuQmCC\n",
"text": "<matplotlib.figure.Figure at 0x106091750>"
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Now, to convert it to a Plotly figure, this is all it takes:"
},
{
"cell_type": "code",
"collapsed": false,
"input": "py.iplot_mpl(fig1)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3560\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x101ad27d0>"
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You can hover, zoom, and pan on the figure. You can also strip out the matplotlib styling, and use Plotly's default styling."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = tls.mpl_to_plotly(fig1)\nfig['layout'].update(showlegend=True)\nfig.strip_style()\npy.iplot(fig)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3561\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x1060a17d0>"
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Next up, an example from [pylab](http://matplotlib.org/examples/pylab_examples/arctest.html)."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig2 = plt.figure()\n\nfrom pylab import *\n\ndef f(t):\n 'a damped exponential'\n s1 = cos(2*pi*t)\n e1 = exp(-t)\n return multiply(s1,e1)\n\nt1 = arange(0.0, 5.0, .2)\n\n\nl = plot(t1, f(t1), 'ro')\nsetp(l, 'markersize', 30)\nsetp(l, 'markerfacecolor', 'b')\n\npy.iplot_mpl(fig2)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3562\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x10639a550>"
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Here's where this gets special. You can get the data from any Plotly graph. That means you can re-plot the graph or part of it, or use your favorite Python tools to wrangle and analyze your data. Check out our [getting started guide](http://nbviewer.ipython.org/github/etpinard/plotly-python-doc/blob/1.0/s0_getting-started/s0_getting-started.ipynb) for a full background on these features."
},
{
"cell_type": "code",
"collapsed": false,
"input": "tls.mpl_to_plotly(fig2).get_data()",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"text": "[{'name': '_line0',\n 'x': [0.0,\n 0.20000000000000001,\n 0.40000000000000002,\n 0.60000000000000009,\n 0.80000000000000004,\n 1.0,\n 1.2000000000000002,\n 1.4000000000000001,\n 1.6000000000000001,\n 1.8,\n 2.0,\n 2.2000000000000002,\n 2.4000000000000004,\n 2.6000000000000001,\n 2.8000000000000003,\n 3.0,\n 3.2000000000000002,\n 3.4000000000000004,\n 3.6000000000000001,\n 3.8000000000000003,\n 4.0,\n 4.2000000000000002,\n 4.4000000000000004,\n 4.6000000000000005,\n 4.8000000000000007],\n 'y': [1.0,\n 0.25300171651849518,\n -0.54230030891302927,\n -0.44399794031078654,\n 0.13885028597711233,\n 0.36787944117144233,\n 0.09307413008823949,\n -0.19950113459002566,\n -0.16333771416280363,\n 0.051080165611754998,\n 0.1353352832366127,\n 0.034240058964379601,\n -0.073392365906047419,\n -0.060088587008433003,\n 0.018791342780197139,\n 0.049787068367863944,\n 0.012596213757493282,\n -0.026999542555766767,\n -0.022105355809443925,\n 0.0069129486808399343,\n 0.018315638888734179,\n 0.0046338880779826647,\n -0.0099325766273000524,\n -0.0081321059420741033,\n 0.0025431316975542792]}]"
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Or you can get the figure makeup. Here, we're using 'IPython.Demo', which is the username and '3357' which is the figure number. You can use this command on Plotly graphs to interact with them from the console. You can access graphs via a URL. For example, for this plot, it's:\n\nhttps://plot.ly/~IPython.Demo/3357/\n"
},
{
"cell_type": "code",
"collapsed": false,
"input": "pylab = py.get_figure('IPython.Demo', '3357')",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": "#print figure\nprint pylab.to_string()",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Figure(\n data=Data([\n Scatter(\n x=[0.0, 0.2, 0.4, 0.6000000000000001, 0.8, 1.0, 1.2000000000000...],\n y=[1.0, 0.2530017165184952, -0.5423003089130293, -0.44399794031...],\n name='_line0',\n mode='markers',\n marker=Marker(\n symbol='dot',\n line=Line(\n color='#000000',\n width=0.5\n ),\n size=30,\n color='#0000FF',\n opacity=1\n )\n )\n ]),\n layout=Layout(\n xaxis=XAxis(\n domain=[0.0, 1.0],\n range=[0.0, 5.0],\n showline=True,\n ticks='inside',\n showgrid=False,\n zeroline=False,\n anchor='y',\n mirror=True\n ),\n yaxis=YAxis(\n domain=[0.0, 1.0],\n range=[-0.6000000000000001, 1.2],\n showline=True,\n ticks='inside',\n showgrid=False,\n zeroline=False,\n anchor='x',\n mirror=True\n ),\n hovermode='closest',\n showlegend=False\n )\n)\n"
}
],
"prompt_number": 11
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Now let's suppose we wanted to add a fit to the graph (see our [fits post](http://blog.plot.ly/post/84402951992/contour-plots-error-bars-chocolate-beer-meat) to learn more), and re-style it a bit. We can go into the web app, fork a copy, and edit the image in our GUI. No coding required."
},
{
"cell_type": "code",
"collapsed": false,
"input": "from IPython.display import Image\nImage(url='https://i.imgur.com/WG0gb9J.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"https://i.imgur.com/WG0gb9J.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 12,
"text": "<IPython.core.display.Image at 0x10043b910>"
}
],
"prompt_number": 12
},
{
"cell_type": "markdown",
"metadata": {},
"source": "We also keep the data and graph together. You can analyze it, share it, or add to other plots. You can [append data](https://plot.ly/python/add-append-extend) to your plots, copy and paste, import, or upload data. Take-away: a Python user could make plots with an Excel user, [ggplot2 Ploty package](ropensci.org/blog/2014/04/17/plotly/), and [MATLAB](plot.ly/MATLAB) user. That's collaboration. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "Image(url='https://i.imgur.com/Mq490fb.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"https://i.imgur.com/Mq490fb.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 13,
"text": "<IPython.core.display.Image at 0x10639a650>"
}
],
"prompt_number": 13
},
{
"cell_type": "markdown",
"metadata": {},
"source": "I can now call that graph into the NB. I can keep the styling, re-use that styling on future graphs, and save styles from other graphs. And if I want to see the data for the fit or access the figure styling, I can run the same commands, but on the updated figure and data for this graph. I don't need to re-code it, and I can save and share this version. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "tls.embed('MattSundquist', '1307')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~MattSundquist/1307\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x1060bff90>"
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Plotly graphs are always interactive, and you can even [stream data to the browser](http://nbviewer.ipython.org/github/plotly/Streaming-Demos/blob/master/IPython%20examples/Real-Time%20Time%20Series.ipynb). You can also embed them in the browser with an iframe snippet."
},
{
"cell_type": "code",
"collapsed": false,
"input": "from IPython.display import HTML",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": "s = \"\"\"<pre style=\"background:#f1f1f1;color:#000\"><iframe src=<span style=\"color:#c03030\">\"https://plot.ly/~etpinard/176/650/550\"</span> width=<span style=\"color:#c03030\">\"650\"</span> height=550<span style=\"color:#c03030\">\" frameBorder=\"</span>0<span style=\"color:#c03030\">\" seamless=\"</span>seamless<span style=\"color:#c03030\">\" scrolling=\"</span>no<span style=\"color:#c03030\">\"></iframe></span></pre>\"\"\"",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": "h = HTML(s); h",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<pre style=\"background:#f1f1f1;color:#000\"><iframe src=<span style=\"color:#c03030\">\"https://plot.ly/~etpinard/176/650/550\"</span> width=<span style=\"color:#c03030\">\"650\"</span> height=550<span style=\"color:#c03030\">\" frameBorder=\"</span>0<span style=\"color:#c03030\">\" seamless=\"</span>seamless<span style=\"color:#c03030\">\" scrolling=\"</span>no<span style=\"color:#c03030\">\"></iframe></span></pre>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 17,
"text": "<IPython.core.display.HTML at 0x1060bf350>"
}
],
"prompt_number": 17
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Where it remains interactive. That means your for-free defaults are: D3 graphs, drawn with JavaScript, and shared data. Here's how it looks in the Washington Post."
},
{
"cell_type": "code",
"collapsed": false,
"input": "Image(url='http://i.imgur.com/XjvtYMr.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"http://i.imgur.com/XjvtYMr.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 18,
"text": "<IPython.core.display.Image at 0x10639ad90>"
}
],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": "It's fun to zoom. Then double-click to re-size. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "HTML('<br><center><iframe class=\"vine-embed\" src=\"https://vine.co/v/Mvzin6HZzLB/embed/simple\" width=\"600\" height=\"600\" frameborder=\"0\"></iframe><script async src=\"//platform.vine.co/static/scripts/embed.js\" charset=\"utf-8\"></script></center><br>')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<br><center><iframe class=\"vine-embed\" src=\"https://vine.co/v/Mvzin6HZzLB/embed/simple\" width=\"600\" height=\"600\" frameborder=\"0\"></iframe><script async src=\"//platform.vine.co/static/scripts/embed.js\" charset=\"utf-8\"></script></center><br>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 19,
"text": "<IPython.core.display.HTML at 0x1060a3150>"
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Plots can be collaboratively edited and shared with others."
},
{
"cell_type": "code",
"collapsed": false,
"input": "Image(url='https://i.imgur.com/CxIYtzG.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"https://i.imgur.com/CxIYtzG.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 20,
"text": "<IPython.core.display.Image at 0x1060bff90>"
}
],
"prompt_number": 20
},
{
"cell_type": "markdown",
"metadata": {},
"source": "So you can keep all your plots for your project, team, or personal work in one plce, you get a profile, like this: https://plot.ly/~jackp/. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "Image(url='https://i.imgur.com/gUC4ajR.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"https://i.imgur.com/gUC4ajR.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 21,
"text": "<IPython.core.display.Image at 0x1060bfc90>"
}
],
"prompt_number": 21
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You can also plot with Plotly with pandas, NumPy, datetime, and more of your favorite Python tools. We've already imported numpy and matplotlib; here we've kept them in so you can simply copy and paste these examples into your own NB. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig3 = plt.figure()\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# make a little extra space between the subplots\nplt.subplots_adjust(wspace=0.5)\n\ndt = 0.01\nt = np.arange(0, 30, dt)\nnse1 = np.random.randn(len(t)) # white noise 1\nnse2 = np.random.randn(len(t)) # white noise 2\nr = np.exp(-t/0.05)\n\ncnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1\ncnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2\n\n# two signals with a coherent part and a random part\ns1 = 0.01*np.sin(2*np.pi*10*t) + cnse1\ns2 = 0.01*np.sin(2*np.pi*10*t) + cnse2\n\nplt.subplot(211)\nplt.plot(t, s1, 'b-', t, s2, 'g-')\nplt.xlim(0,5)\nplt.xlabel('time')\nplt.ylabel('s1 and s2')\nplt.grid(True)\n\nplt.subplot(212)\ncxy, f = plt.csd(s1, s2, 256, 1./dt)\nplt.ylabel('CSD (db)')\n\npy.iplot_mpl(fig3)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3563\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x106435a90>"
}
],
"prompt_number": 22
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Another subplotting example using Plotly's defaults. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig4 = plt.figure()\n\nfrom pylab import figure, show\nfrom numpy import arange, sin, pi\n\nt = arange(0.0, 1.0, 0.01)\n\nfig = figure(1)\n\nax1 = fig.add_subplot(211)\nax1.plot(t, sin(2*pi*t))\nax1.grid(True)\nax1.set_ylim( (-2,2) )\nax1.set_ylabel('1 Hz')\nax1.set_title('A sine wave or two')\n\nfor label in ax1.get_xticklabels():\n label.set_color('r')\n\n\nax2 = fig.add_subplot(212)\nax2.plot(t, sin(2*2*pi*t))\nax2.grid(True)\nax2.set_ylim( (-2,2) )\nl = ax2.set_xlabel('Hi mom')\nl.set_color('g')\nl.set_fontsize('large')\n\npy.iplot_mpl(fig4, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3564\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x106488d50>"
}
],
"prompt_number": 23
},
{
"cell_type": "markdown",
"metadata": {},
"source": "From the gallery here we're shwoing [Anscombe's quartet](http://matplotlib.org/examples/pylab_examples/anscombe.html). You might also like Plotly's [blog post](blog.plot.ly/post/68951620673/why-graph-anscombes-quartet) on the subject."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig5 = plt.figure()\n\nfrom __future__ import print_function\n\"\"\"\nEdward Tufte uses this example from Anscombe to show 4 datasets of x\nand y that have the same mean, standard deviation, and regression\nline, but which are qualitatively different.\n\nmatplotlib fun for a rainy day\n\"\"\"\n\nfrom pylab import *\n\nx = array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])\ny1 = array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68])\ny2 = array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74])\ny3 = array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73])\nx4 = array([8,8,8,8,8,8,8,19,8,8,8])\ny4 = array([6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89])\n\ndef fit(x):\n return 3+0.5*x\n\n\n\nxfit = array( [amin(x), amax(x) ] )\n\nsubplot(221)\nplot(x,y1,'ks', xfit, fit(xfit), 'r-', lw=2)\naxis([2,20,2,14])\nsetp(gca(), xticklabels=[], yticks=(4,8,12), xticks=(0,10,20))\ntext(3,12, 'I', fontsize=20)\n\nsubplot(222)\nplot(x,y2,'ks', xfit, fit(xfit), 'r-', lw=2)\naxis([2,20,2,14])\nsetp(gca(), xticklabels=[], yticks=(4,8,12), yticklabels=[], xticks=(0,10,20))\ntext(3,12, 'II', fontsize=20)\n\nsubplot(223)\nplot(x,y3,'ks', xfit, fit(xfit), 'r-', lw=2)\naxis([2,20,2,14])\ntext(3,12, 'III', fontsize=20)\nsetp(gca(), yticks=(4,8,12), xticks=(0,10,20))\n\nsubplot(224)\n\nxfit = array([amin(x4),amax(x4)])\nplot(x4,y4,'ks', xfit, fit(xfit), 'r-', lw=2)\naxis([2,20,2,14])\nsetp(gca(), yticklabels=[], yticks=(4,8,12), xticks=(0,10,20))\ntext(3,12, 'IV', fontsize=20)\n\n#verify the stats\npairs = (x,y1), (x,y2), (x,y3), (x4,y4)\nfor x,y in pairs:\n print ('mean=%1.2f, std=%1.2f, r=%1.2f'%(mean(y), std(y), corrcoef(x,y)[0][1]))\n\npy.iplot_mpl(fig5, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "mean=7.50, std=1.94, r=0.82\nmean=7.50, std=1.94, r=0.82\nmean=7.50, std=1.94, r=0.82\nmean=7.50, std=1.94, r=0.82\n"
},
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3565\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x106d446d0>"
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": "And a final [histogram](http://matplotlib.org/examples/statistics/histogram_demo_features.html) from the matplotlib gallery. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig6 = plt.figure()\n\nimport numpy as np\nimport matplotlib.mlab as mlab\nimport matplotlib.pyplot as plt\n\n\n# example data\nmu = 100 # mean of distribution\nsigma = 15 # standard deviation of distribution\nx = mu + sigma * np.random.randn(10000)\n\nnum_bins = 50\n# the histogram of the data\nn, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5)\n# add a 'best fit' line\ny = mlab.normpdf(bins, mu, sigma)\nplt.plot(bins, y, 'r--')\nplt.xlabel('Smarts')\nplt.ylabel('Probability')\n\n# Tweak spacing to prevent clipping of ylabel\nplt.subplots_adjust(left=0.15)\n\npy.iplot_mpl(fig6, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3566\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x106cf8d10>"
}
],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Want to see more matplotlylib graphs? Head over to our [API](https://plot.ly/python) and copy and paste away."
},
{
"cell_type": "code",
"collapsed": false,
"input": "Image(url='https://i.imgur.com/HEJEnjQ.png')",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<img src=\"https://i.imgur.com/HEJEnjQ.png\"/>",
"metadata": {},
"output_type": "pyout",
"prompt_number": 26,
"text": "<IPython.core.display.Image at 0x106372890>"
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "II. ggplot for Python"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "An exciting package by [Greg Lamp](https://github.com/glamp) and the team at [\u0177hat](https://yhathq.com/) is [ggplot for Python](https://github.com/yhat/ggplot). You can draw figures with ggplot's wonderful syntax and share them with Plotly. You'll want to run `$ pip install ggplot` to get started."
},
{
"cell_type": "code",
"collapsed": false,
"input": "from ggplot import *",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 27
},
{
"cell_type": "markdown",
"metadata": {},
"source": "We'll start out with a plot from the diamonds dataset. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "a = ggplot(aes(x='price'), data=diamonds) + geom_histogram() + facet_wrap(\"cut\") ",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 28
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Then share it to Plotly."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = a.draw() \npy.iplot_mpl(fig, strip_style=True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3582\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x1126eb490>"
}
],
"prompt_number": 52
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Line charts can be interactive (drag your mouse along the line to see the data on the hover)."
},
{
"cell_type": "code",
"collapsed": false,
"input": "b = ggplot(aes(x='date', y='beef'), data=meat) + \\\n geom_line() ",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 30
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = b.draw() \npy.iplot_mpl(fig)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3568\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x10645a490>"
}
],
"prompt_number": 31
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Histograms are also fun to hover over to get the exact data. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "c = ggplot(aes(x='price'), data=diamonds) + geom_histogram() + ggtitle('My Diamond Histogram')",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 32
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = c.draw() \npy.iplot_mpl(fig, strip_style=True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3569\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x1115a4b50>"
}
],
"prompt_number": 33
},
{
"cell_type": "code",
"collapsed": false,
"input": "d = ggplot(aes(x='x', y='y', color='z'), data=diamonds.head(1000)) +\\\n geom_point() ",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 34
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = d.draw() \npy.iplot_mpl(fig, strip_style=True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3570\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110c96f90>"
}
],
"prompt_number": 35
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You can also use more advanced plotting types in collaboration with pandas. You can add a geom."
},
{
"cell_type": "code",
"collapsed": false,
"input": "import pandas as pd",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 36
},
{
"cell_type": "code",
"collapsed": false,
"input": "random_walk1 = pd.DataFrame({\n \"x\": np.arange(100),\n \"y\": np.cumsum(np.random.choice([-1, 1], 100))\n})\nrandom_walk2 = pd.DataFrame({\n \"x\": np.arange(100),\n \"y\": np.cumsum(np.random.choice([-1, 1], 100))\n})\ne = ggplot(aes(x='x', y='y'), data=random_walk1) + \\\n geom_step() + \\\n geom_step(aes(x='x', y='y'), data=random_walk2)",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 37
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig = e.draw() \npy.iplot_mpl(fig, strip_style=True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3571\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110c1c210>"
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "III. Prettyplotlib graphs in Plotly"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "The lovely gallery of [examples](http://nbviewer.ipython.org/github/olgabot/prettyplotlib/blob/master/ipython_notebooks/Examples%20of%20everything%20pretty%20and%20plotted!.ipynb?create=1) from [prettyplotlib](https://github.com/olgabot/prettyplotlib), a matplotlib enhnacing library by [Olga Botvinnik](https://github.com/olgabot), is a fun one to make interactive. Here's a scatter; let us know if you make others. You'll note that not all elements of the styling come through. Head over to [the homepage](http://olgabot.github.io/prettyplotlib/) for documentation."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig12 = plt.figure()\n\nimport prettyplotlib as ppl\n\n# Set the random seed for consistency\nnp.random.seed(12)\n\n# Show the whole color range\nfor i in range(8):\n x = np.random.normal(loc=i, size=800)\n y = np.random.normal(loc=i, size=800)\n ax = ppl.scatter(x, y, label=str(i))\n \nppl.legend(ax)\nax.set_title('prettyplotlib `scatter`')\nax.legend().set_visible(False)\n\npy.iplot_mpl(fig12)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3572\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x111596390>"
}
],
"prompt_number": 39
},
{
"cell_type": "markdown",
"metadata": {},
"source": "And another prettyplotlib example."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig13 = plt.figure()\n\nimport prettyplotlib as ppl\n\n# Set the random seed for consistency\nnp.random.seed(12)\n\n# Show the whole color range\nfor i in range(8):\n y = np.random.normal(size=1000).cumsum()\n x = np.arange(1000)\n\n # Specify both x and y\n ppl.plot(x, y, label=str(i), linewidth=0.75)\n \npy.iplot_mpl(fig13)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3573\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110171b50>"
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "IV. Plotting with seaborn"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Another library we really dig is [seaborn](http://stanford.edu/~mwaskom/software/seaborn/index.html), a library to maximize aesthetics of matplotlib plots. It's by by [Michael Waskom](http://stanford.edu/~mwaskom/). You'll need to install it with ` $ pip install seaborn`, and may need to [import six](http://stackoverflow.com/questions/13967428/importerror-no-module-named-six), which you can do from pip. The styling isn't yet translated to Plotly, so we'll go to Plotly's default settings. "
},
{
"cell_type": "code",
"collapsed": false,
"input": "import seaborn as sns\nfrom matplotlylib import fig_to_plotly",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 41
},
{
"cell_type": "code",
"collapsed": false,
"input": "def sinplot(flip=1):\n x = np.linspace(0, 14, 100)\n for i in range(1, 7):\n plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 42
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig14 = plt.figure()\n\nsns.set_style(\"dark\")\nsinplot()\n\npy.iplot_mpl(fig14, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3574\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110c84f50>"
}
],
"prompt_number": 43
},
{
"cell_type": "markdown",
"metadata": {},
"source": "You can also run subplots like this."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig15 = plt.figure()\n\nwith sns.axes_style(\"darkgrid\"):\n plt.subplot(211)\n sinplot()\nplt.subplot(212)\nsinplot(-1)\n\npy.iplot_mpl(fig15, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3575\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110ce3150>"
}
],
"prompt_number": 44
},
{
"cell_type": "markdown",
"metadata": {},
"source": "And a final example, [combining plot types](http://stanford.edu/~mwaskom/software/seaborn/tutorial/plotting_distributions.html#basic-visualization-with-histograms)."
},
{
"cell_type": "code",
"collapsed": false,
"input": "import numpy as np\nfrom numpy.random import randn\nimport pandas as pd\nfrom scipy import stats\nimport matplotlib as mpl\nimport matplotlib.pyplot as plt\nimport seaborn as sns",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 45
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig16 = plt.figure()\n\nsns.set_palette(\"hls\")\nmpl.rc(\"figure\", figsize=(8, 4))\ndata = randn(200)\nsns.distplot(data);\n\npy.iplot_mpl(fig16, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3576\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110cf2550>"
}
],
"prompt_number": 46
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "V. Stack Overflow Answers"
},
{
"cell_type": "markdown",
"metadata": {},
"source": "We love Stack Overflow, so wanted answer a few questions from there, in Plotly. If you want to plot data you already have as a [histogram](http://stackoverflow.com/questions/5328556/histogram-matplotlib) and make it interactive, try this one out."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig17 = plt.figure()\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nmu, sigma = 100, 15\nx = mu + sigma * np.random.randn(10000)\nhist, bins = np.histogram(x, bins=50)\nwidth = 0.7 * (bins[1] - bins[0])\ncenter = (bins[:-1] + bins[1:]) / 2\nplt.bar(center, hist, align='center', width=width)\n\npy.iplot_mpl(fig17, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3577\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x11157f510>"
}
],
"prompt_number": 47
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Here is how to create a [density plot](http://stackoverflow.com/questions/4150171/how-to-create-a-density-plot-in-matplotlib/4152016#4152016) like you might in R, but in matplotlib."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig18 = plt.figure()\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom scipy.stats import gaussian_kde\ndata = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8\ndensity = gaussian_kde(data)\nxs = np.linspace(0,8,200)\ndensity.covariance_factor = lambda : .25\ndensity._compute_covariance()\nplt.plot(xs,density(xs))\n\npy.iplot_mpl(fig18, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3578\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x110cec910>"
}
],
"prompt_number": 48
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Drawing a simple example of [different lines for different plots](http://stackoverflow.com/questions/4805048/how-to-get-different-lines-for-different-plots-in-a-single-figure/4805456#4805456) looks like this..."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig19 = plt.figure()\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nx = np.arange(10)\n\nplt.plot(x, x)\nplt.plot(x, 2 * x)\nplt.plot(x, 3 * x)\nplt.plot(x, 4 * x)\n\npy.iplot_mpl(fig19, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3579\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x10fade810>"
}
],
"prompt_number": 49
},
{
"cell_type": "markdown",
"metadata": {},
"source": "...and can get more exciting like this."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig20 = plt.figure()\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nnum_plots = 10\n\n# Have a look at the colormaps here and decide which one you'd like:\n# http://matplotlib.org/1.2.1/examples/pylab_examples/show_colormaps.html\ncolormap = plt.cm.gist_ncar\nplt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, num_plots)])\n\n# Plot several different functions...\nx = np.arange(10)\nlabels = []\nfor i in range(1, num_plots + 1):\n plt.plot(x, i * x + 5 * i)\n labels.append(r'$y = %ix + %i$' % (i, 5*i))\n\npy.iplot_mpl(fig20, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3580\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x10f9f0110>"
}
],
"prompt_number": 50
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Plotly also lets you draw [variables as subscripts in math mode](http://stackoverflow.com/questions/23276918/writing-variables-as-subscripts-in-math-mode)."
},
{
"cell_type": "code",
"collapsed": false,
"input": "fig21 = plt.figure()\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport matplotlib.mlab as mlab\n\nmean = [10,12,16,22,25]\nvariance = [3,6,8,10,12]\n\nx = np.linspace(0,40,1000)\n\nfor i in range(4):\n sigma = np.sqrt(variance[i])\n y = mlab.normpdf(x,mean[i],sigma)\n plt.plot(x,y, label=r'$v_{}$'.format(i+1))\n\nplt.xlabel(\"X\")\nplt.ylabel(\"P(X)\") \n\npy.iplot_mpl(fig21, strip_style = True)",
"language": "python",
"metadata": {},
"outputs": [
{
"html": "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~IPython.Demo/3581\" height=\"525\" width=\"100%\"></iframe>",
"metadata": {},
"output_type": "display_data",
"text": "<IPython.core.display.HTML at 0x10f9f9d10>"
}
],
"prompt_number": 51
}
],
"metadata": {}
}
]
}