-
Notifications
You must be signed in to change notification settings - Fork 1
/
cora_train_scale.py
271 lines (224 loc) · 11.2 KB
/
cora_train_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#
import os
import sys
import torch
from torch_geometric.loader import NeighborSampler
import tqdm
import torch_sparse
import torch.nn.functional as F
import numpy as np
import random
import copy
import argparse
src_dir = os.path.dirname(os.path.dirname(__file__))
sys.path.append(src_dir)
from utils.data_loader import load_data
from utils.utils import seed_everything,create_otf_edges,get_feature_mask
from models.fognn_scale import ScalableFOGNN as FOGNN
from feature_propagation import FeaturePropagation
def neighborhood_mean_filling(edge_index, X, feature_mask):
n_nodes = X.shape[0]
X_zero_filled = X
X_zero_filled[~feature_mask] = 0.0
edge_values = torch.ones(edge_index.shape[1]).to(edge_index.device)
edge_index_mm = torch.stack([edge_index[1], edge_index[0]]).to(edge_index.device)
D = torch_sparse.spmm(edge_index_mm, edge_values, n_nodes, n_nodes, feature_mask.float())
mean_neighborhood_features = torch_sparse.spmm(edge_index_mm, edge_values, n_nodes, n_nodes, X_zero_filled) / D
# If a feature is not present on any neighbor, set it to 0
mean_neighborhood_features[mean_neighborhood_features.isnan()] = 0
return mean_neighborhood_features
def feature_propagation(edge_index, X, feature_mask, num_iterations):
propagation_model = FeaturePropagation(num_iterations=num_iterations)
return propagation_model.propagate(x=X, edge_index=edge_index, mask=feature_mask)
seed_everything(0)
parser = argparse.ArgumentParser()
parser.add_argument("--data", help="name of the dataset",
type=str)
parser.add_argument("--gpu",help="GPU no. to use, -1 in case of no gpu", type=int)
parser.add_argument("--missing_rate",help="% of features to be missed randomly", type=float)
parser.add_argument("--categorical",default=False,help="Make edges only when feature is present/categorical", type=bool)
parser.add_argument("--verbose",default=False,help="Print Model output during training", type=bool)
parser.add_argument("--num_epochs",default=200,help="Print Model output during training", type=int)
parser.add_argument("--num_layers",default=1,help="Num of layers (1,2)", type=int)
parser.add_argument("--bs_train_nbd",default=512,help="Num of nodes in training computation subgraph", type=int)
parser.add_argument("--bs_test_nbd",default=-1,help="Num of nodes in testing computation subgraph", type=int)
parser.add_argument("--drop_rate",default=0.2,help="Drop rate", type=float)
parser.add_argument("--result_file",type=str,default="")
parser.add_argument("--edge_value_thresh",default=0.01,type=float)
parser.add_argument("--imputation",default='zero',type=str)
parser.add_argument("--heads",default=4,type=int)
parser.add_argument("--weight_decay",default=0,type=float)
parser.add_argument("--otf_sample",default=0,type=int)
parser.add_argument("--fto_sample",default=0,type=int)
parser.add_argument("--num_obs_samples",default=30,type=int)
parser.add_argument("--num_feat_samples",default=30,type=int)
parser.add_argument("--use_data_x_otf",default=0,type=int) ### If this is on then during samples, nbrs having values as 1 will be selected first and uniform sampling from remaining
parser.add_argument("--use_data_x_fto",default=0,type=int) ### If this is on then during samples, nbrs having values as 1 will be selected first and uniform sampling from remaining
parser.add_argument("--otf_sample_testing",default=0,type=int) ### If this is on then during samples, nbrs having values as 1 will be selected first and uniform sampling from remaining
parser.add_argument("--sampling_in_loop",default=0,type=int) ### If this is on then during samples, nbrs having values as 1 will be selected first and uniform sampling from remaining
args = parser.parse_args()
num_epochs = args.num_epochs
gpu = int(args.gpu)
dataset_name = args.data
missing_rate = args.missing_rate
categorical = args.categorical
verbose = args.verbose
num_layers = args.num_layers
bs_train_nbd = args.bs_train_nbd
bs_test_nbd = args.bs_test_nbd
drop_rate = args.drop_rate
result_file = args.result_file
edge_value_thresh = args.edge_value_thresh
imputation_method = args.imputation
heads = args.heads
weight_decay = args.weight_decay
otf_sample = args.otf_sample
fto_sample = args.fto_sample
num_feat_samples = args.num_feat_samples
num_obs_samples = args.num_obs_samples
use_data_x_otf = args.use_data_x_otf
use_data_x_fto = args.use_data_x_fto
otf_sample_testing = args.otf_sample_testing
sampling_in_loop = args.sampling_in_loop
print(args)
device = torch.device(f'cuda:{gpu}' if torch.cuda.is_available() else 'cpu')
data = load_data(dataset_name,train_ratio=0.6,val_ratio=0.2)
print("train dataset, val dataset and test dataset ", data.train_mask.sum(),data.val_mask.sum(),data.test_mask.sum())
if missing_rate >0 :
print("missing rate,", missing_rate)
feature_mask = get_feature_mask(missing_rate,data['x'].shape[0],data['x'].shape[1])
data['x'][~feature_mask] = float('nan') ### replaced values with nan
if imputation_method=='zero':
X_reconstructed = torch.zeros_like(data['x'])
if imputation_method == 'nf':
print("Neighbourhood mean")
X_reconstructed = neighborhood_mean_filling(data.edge_index,data.x,feature_mask)
if imputation_method == 'fp':
print("Feature propogation")
X_reconstructed = feature_propagation(data.edge_index,data.x,feature_mask,50)
#X_reconstructed = feature_propagation(data.edge_index,data.x,feature_mask,50)#
data['x'] = torch.where(feature_mask, data.x, X_reconstructed)
if imputation_method in ['nf','fp']:
if categorical == 0:
print("modifying the feature mask in case of fp/nf")
print("Remaining edges before this ",feature_mask.sum(),data['x'].shape[0]*data['x'].shape[1])
feature_mask = torch.logical_or(data['x']>edge_value_thresh,feature_mask)
print(feature_mask.shape)
else:
feature_mask = torch.ones_like(data['x']).bool()
print("Remaining edges ",feature_mask.sum(),data['x'].shape[0]*data['x'].shape[1])
print("Sum of data after masking", data.x.sum())
num_samples = [20,15]
if bs_train_nbd == -1:
bs_train_nbd = data.x.shape[0]
if bs_test_nbd == -1:
bs_test_nbd = data.x.shape[0]
print("bs_train_nbd and test_nbd", bs_train_nbd,bs_test_nbd)
train_neigh_sampler = NeighborSampler(
data.edge_index, node_idx= data.train_mask , ### Remeber to change
sizes=num_samples, batch_size=bs_train_nbd, shuffle=True, num_workers=0)
subgraph_loader = NeighborSampler(
data.edge_index, node_idx=None,
sizes=[-1,-1], batch_size=bs_test_nbd, shuffle=False, num_workers=0)
# import pdb
# pdb.set_trace()
num_communities = len(set(data.y.numpy().tolist()))
print(f"Node Feature Matrix Info: # Nodes: {data.x.shape[0]}")
print(f"Node Feature Matrix Info: # Node Features: {data.x.shape[1]}")
print(f"Edge Index Shape: {data.edge_index.shape}")
print(f"Edge Weight: {data.edge_attr}")
print(f"# Labels/classes: {num_communities}")
import gc
## head = 4
print("number of heads,", heads)
model = FOGNN(drop_rate=drop_rate, num_obs_node_features=data.num_node_features,
num_feat_node_features=data.num_node_features,
num_layers=2, hidden_size=256, out_channels=num_communities,heads=heads,
categorical=categorical,device=device,feat_val_thresh=edge_value_thresh,
otf_sample=otf_sample,fto_sample = fto_sample,
num_obs_samples=num_obs_samples,num_feat_samples=num_feat_samples,
use_data_x_otf=use_data_x_otf,use_data_x_fto=use_data_x_fto,otf_sample_testing=otf_sample_testing)
model = model.to(device) #0001
optimizer = torch.optim.Adam(model.parameters(), lr=0.001,weight_decay = weight_decay)
Y = data.y.squeeze().to(device)
obs_features = torch.ones(data.x.shape[0],data.x.shape[1],dtype=torch.float32).to(device)
print(obs_features.shape)
feat_features = np.eye(data.x.shape[1])
feat_features = torch.tensor(feat_features,dtype=torch.float32).to(device)
print(feat_features.shape)
feature_mask = feature_mask.to(device)
#data.x = data.x.to(device)
model_save_path = "./../models/temp/"
from pathlib import Path
Path(model_save_path).mkdir(parents=True, exist_ok=True)
actual_test_acc = 0
best_val_acc = 0
best_epoch = 0
numPosSamples =64
# import pdb
# pdb.set_trace()
for epoch in range(0,num_epochs):
model.train()
total_loss = total_correct = 0
total_computed = 0
for batch_size, n_id, adjs in train_neigh_sampler:
adjs = [adj.to(device) for adj in adjs]
optimizer.zero_grad()
# print(obs_features.shape,obs_features[n_id].shape,feature_mask.shape,n_id.shape)
# import pdb
# pdb.set_trace()
# break
out,a,b = model(obs_features=obs_features[n_id],feature_mask = feature_mask[n_id],
feat_features=feat_features,obs_adjs = adjs,data_x = data.x[n_id],num_layers=num_layers,sampling_in_loop=sampling_in_loop)
#print(out.shape,batch_size,Y.shape)
if bs_train_nbd == data.x.shape[0]: #### whole batch is coming as out
p = torch.Tensor([1/batch_size*1.0]*batch_size)
sampledPosIndex = p.multinomial(num_samples=numPosSamples, replacement=False)
newMask = torch.Tensor([False]*batch_size)
newMask = newMask.to(torch.bool)
newMask[sampledPosIndex]=True
loss = F.nll_loss(out[newMask], Y[n_id[:batch_size]][newMask])
#loss = F.nll_loss(out[newMask], Y_temp[newMask])
else:
loss = F.nll_loss(out, Y[n_id[:batch_size]])
loss.backward()
optimizer.step()
total_loss += float(loss)
total_correct += int(out.argmax(dim=-1).eq(Y[n_id[:batch_size]]).sum())
total_computed+= out.shape[0]
loss = total_loss / len(train_neigh_sampler)
approx_acc = total_correct / total_computed#int(data.train_mask.sum())
if verbose:
print(f"epoch:{epoch},loss:{loss:.4f},train_acc_approx:{approx_acc}")
del out,a,b
torch.cuda.empty_cache()
with torch.no_grad():
model.eval()
outs = []
for batch_size, n_id, adjs in subgraph_loader:
adjs = [adj.to(device) for adj in adjs]
out,a,b = model(obs_features=obs_features[n_id],feature_mask = feature_mask[n_id],
feat_features=feat_features,obs_adjs = adjs,data_x = data.x[n_id],num_layers=num_layers)
outs.append(out)
del a,b
out = torch.cat(outs, dim=0)
del outs
train_acc = int(out.argmax(dim=-1).eq(Y)[data.train_mask].sum())*100.0/(data.train_mask.sum().item())
val_acc = int(out.argmax(dim=-1).eq(Y)[data.val_mask].sum())*100.0/(data.val_mask.sum().item())
test_acc = int(out.argmax(dim=-1).eq(Y)[data.test_mask].sum())*100.0/(data.test_mask.sum().item())
if val_acc > best_val_acc:
best_val_acc = val_acc
actual_test_acc = test_acc
best_epoch = epoch
#torch.save(model, model_save_path + f'/best_val_{val_acc:.2f}.pt')
if verbose:
print(f'epoch:{epoch} , Train: {train_acc:.4f},Val acc:{val_acc:.4f} ,Test Acc: {test_acc:.4f},actual_test_acc: {actual_test_acc:.4f}')
del out
import gc
gc.collect()
print("Test accuracy,",actual_test_acc )
if result_file.strip() != '':
with open(result_file,"a") as f:
f.write(str(actual_test_acc))
f.write("\n")
f.close()