Skip to content

Latest commit

 

History

History
54 lines (49 loc) · 2.01 KB

README.md

File metadata and controls

54 lines (49 loc) · 2.01 KB

IterefinE

This repo contains pytorch implementation for the iterative knowledge graph refinement models presented in "IterefinE: Iterative KG Refinement Embeddings using Symbolic Knowledge" at AKBC 2020.

Running Instructions

After cloning the repository, check if all the above requirements are met. Also, download the datasets if you need.

To run IterefinE, go to combined folder and run the following script-

./run_all.sh

Here it runs the TypeE-ComplEx and TypeE-ConvE on all the datasets for 6 iterations. To only run TypeE-X models on particular dataset for particular embedding method, use the commands given below-

stdbuf -oL ./scripts/wn18rr.sh 6 &> wn18rr.log
stdbuf -oL ./scripts/fb15k-237.sh 6 &> fb15k-237.log
stdbuf -oL ./scripts/yago_new.sh 6 &> yago.log
stdbuf -oL ./scripts/nell_dev.sh 6 &> nell.log
stdbuf -oL ./scripts/fb15k-237_ConvE.sh 6 &> fb15k-237_ConvE.log
stdbuf -oL ./scripts/nell_ConvE_dev.sh 6 &> nell_ConvE.log
stdbuf -oL ./scripts/yago_ConvE_new.sh 6 &> yago_ConvE.log
stdbuf -oL ./scripts/wn18rr_ConvE.sh 6 &> wn18rr_ConvE.log

To run alpha type models, use the command given below-

python3 evaluate_and_update.py PSLKGI_rel_predicts.txt data/test_relations.txt cat_predicts.txt data/test_labels.txt data/dev_relations.txt data/dev_labels.txt neural_dev_labels.txt neural_dev_predictions.txt neural_test_labels.txt neural_test_predictions.txt 

To prepare the graph showing the variation of performance with iterations-

python3 create_pdf_graphs2.py 

To run experiments using only one class of ontology rules-

./dom_ran.sh
./nell_only_dom_ran.sh
./nell_only_inv.sh
./fb15k237_only_dom_ran.sh
./fb15k237_only_inv.sh

To run experiments excluding one class of ontology rules-

./nell_subclass.sh
./nell_range.sh
./nell_mut.sh
./nell_rmut.sh
./fb15k-237_mut.sh
./fb15k-237_domain.sh
./fb15k-237_subclass.sh

To run the standalone embedding methods --namely, ComplEx and ConvE models, on all datasets, go to neural folder and run the following script:

./train_script.sh