-
Notifications
You must be signed in to change notification settings - Fork 61
/
Llama_4_40.py
482 lines (373 loc) · 24 KB
/
Llama_4_40.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import torch
import numpy as np
import torch.nn as nn
import math
from typing import Optional, Tuple
import torch.nn.functional as F
from transformers.cache_utils import Cache
from flash_attn import flash_attn_func, flash_attn_varlen_func
from .selfextend_flash_attn import self_extend_flash_forward
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin) if not q is None else None
k_embed = (k * cos) + (rotate_half(k) * sin) if not k is None else None
return q_embed, k_embed
def self_extend_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
scale_base: Optional[int] = -1,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len) # only consider bsz=1 for now.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 // group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
else:
causal_mask = attention_mask
group_attn_weights = group_attn_weights + causal_mask
neighbor_attn_weights = neighbor_attn_weights + causal_mask
if q_len == 1:
neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask[:, -group_size_2:] = 1
elif q_len == kv_seq_len:
neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask = torch.tril(neighbor_attention_mask)
if q_len-group_size_2 > 0:
group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
else:
raise ValueError("q_len should be 1 or seq_len.")
neighbor_attention_mask = neighbor_attention_mask.bool()
attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def flash_self_extend_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
scale_base: Optional[int] = -1,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Require updating tansformers to >= 4.38.2, flash_attn >= 2.5.6
a. Only support causal mask.
b. Don't support atttention_mask.
c. Never test it with batch size > 1.
d. Only support q_len = 1 or q_len = seq_len.
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
# only consider bsz=1 for now.
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len)
attn_dropout = self.config.attention_dropout if self.training else 0.0
if q_len == 1:
# We implement the case q_len == 1 separately, by manipulating positions.
# for our flash implementation doesnot work for decoding stage at the releasing time.
neighbor_key_position = position_ids[:, -1] - key_position
_re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2
group_key_position = position_ids[:, -1]//group_size_1 - key_position//group_size_1 + (_re_group_size_2 - _re_group_size_2//group_size_1)
decode_key_position = torch.cat([group_key_position[:, :-group_size_2], neighbor_key_position[:,-group_size_2:]], dim=1)
decode_k_cos, decode_k_sin = self.rotary_emb(value_states, decode_key_position)#, seq_len=None)
#import pdb; pdb.set_trace()
#neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, cos, sin, query_position_ids)
decode_query_states = scaled_query.transpose(1,2).contiguous() # position 0: cos 0 = 1, sin 0 = 0
_, decode_key_states = apply_rotary_pos_emb(None, key_states, decode_k_cos, -decode_k_sin, decode_key_position)
decode_key_states = repeat_kv(decode_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
decode_value_states = repeat_kv(value_states, self.num_key_value_groups).transpose(1, 2).contiguous()
attn_output = flash_attn_func(decode_query_states,
decode_key_states,
decode_value_states,
attn_dropout,
softmax_scale=None,
causal=True)
elif q_len == kv_seq_len:
# set correct position_ids & apply RoPE.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 / group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_query_states = neighbor_query_states.transpose(1, 2).contiguous()
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
group_query_states = group_query_states.transpose(1, 2).contiguous()
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
value_states = repeat_kv(value_states, self.num_key_value_groups).transpose(1, 2).contiguous()
attn_output = self_extend_flash_forward(self,
query_position,
group_size_2,
neighbor_query_states,
neighbor_key_states,
group_query_states,
group_key_states,
value_states,
attention_mask,
bsz,
q_len,
kv_seq_len,
attn_dropout,
)
else:
raise ValueError("q_len should be 1 or seq_len.")
attn_output = attn_output.contiguous()
attn_output = attn_output.view(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def lm_infinite_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
initial_num: Optional[int] = 1,
scale_base: Optional[int] = -1,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len) # only consider bsz=1 for now.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 / group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
else:
causal_mask = attention_mask
group_attn_weights = group_attn_weights + causal_mask
neighbor_attn_weights = neighbor_attn_weights + causal_mask
if q_len == 1:
neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask[:, -group_size_2:] = 1
elif q_len == kv_seq_len:
neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask = torch.tril(neighbor_attention_mask)
if q_len-group_size_2 > 0:
group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
else:
raise ValueError("q_len should be 1 or seq_len.")
neighbor_attention_mask = neighbor_attention_mask.bool()
attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value