We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
# 选择一种优化器 optimizer = torch.optim.Adam(...) # 选择上面提到的一种或多种动态调整学习率的方法 scheduler1 = torch.optim.lr_scheduler.... scheduler2 = torch.optim.lr_scheduler.... ... schedulern = torch.optim.lr_scheduler.... # 进行训练 for epoch in range(100): train(...) validate(...) optimizer.step() # 需要在优化器参数更新之后再动态调整学习率 # scheduler的优化是在每一轮后面进行的 scheduler1.step() ... schedulern.step()
scheduler.step()放在训练循环外可能会导致学习率更新的时机不正确,影响模型的收敛速度和最终性能。如果将 scheduler.step() 放在训练循环外(如循环结束后),学习率只会更新一次,这通常是不正确的。在每次 optimizer.step() 更新权重后调用 scheduler.step(),这样才能正确地调整学习率。
for epoch in range(100): train(...) validate(...) optimizer.step() scheduler.step()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
scheduler.step()放在训练循环外可能会导致学习率更新的时机不正确,影响模型的收敛速度和最终性能。如果将 scheduler.step() 放在训练循环外(如循环结束后),学习率只会更新一次,这通常是不正确的。在每次 optimizer.step() 更新权重后调用 scheduler.step(),这样才能正确地调整学习率。
The text was updated successfully, but these errors were encountered: