-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc.py
33 lines (25 loc) · 872 Bytes
/
proc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
def r2z(rmat):
"""
fisher z-transforms the correlation matrix, first setting diagonal to 0
"""
np.fill_diagonal(rmat, 0)
zmat = np.log((1.0+rmat) / (1.0-rmat)) / 2
return zmat
def z2r(zmat):
"""
applies inverse of fisher z-transform to recover the correlation matrix
"""
rmat = (np.exp(2*zmat) - 1) / (np.exp(2 * zmat) + 1)
np.fill_diagonal(rmat, 1)
return rmat
def get_corrs(traces_stack):
samps, tps, regs = traces_stack.shape
z_distro_stack = np.zeros((samps, int((regs**2 - regs)/2)))
for s in range(samps):
traces = traces_stack[s, :, :]
normed = (traces - traces.mean(axis=0)) / traces.std(axis=0)
rmat = np.dot(normed.T, normed) / tps
zmat = r2z(rmat)
z_distro_stack[s, :] = zmat[np.nonzero(np.triu(zmat, k=1))]
return z_distro_stack