-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInference_Dogs.py
116 lines (92 loc) · 3.69 KB
/
Inference_Dogs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections")
ap.add_argument("-u", "--movidius", type=bool, default=0, help="boolean indicating if the Movidius should be used")
args = vars(ap.parse_args())
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
email = ""
pas = ""
sms_gateway = ''
smtp = "smtp.gmail.com"
port = 587
def send_sms():
server = smtplib.SMTP(smtp,port)
server.starttls()
server.login(email,pas)
msg = MIMEMultipart()
msg['From'] = email
msg['To'] = sms_gateway
msg['Subject'] = "Object detected\n"
body = "Dog Identified\n"
msg.attach(MIMEText(body, 'plain'))
sms = msg.as_string()
server.sendmail(email,sms_gateway,sms)
server.quit()
# load serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# specify the target device as the Myriad processor on the NCS
net.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD)
# initialize the video stream
print("[INFO] starting video stream...")
vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with prediction
confidence = detections[0, 0, i, 2]
# ensuring the confidence is greater than the minimum threshold
if confidence > args["confidence"]:
# extract the index of the class label from detections and
# compute the (x, y)-coordinates of the bounding box for the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
idlabel=CLASSES[idx]
#if Dog is detected in frame, call SMS function:
if idlabel == "dog": send_sms()
cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
fps.update()
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
cv2.destroyAllWindows()
vs.stop()