-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata_encoding.py
49 lines (42 loc) · 1.59 KB
/
data_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from sklearn import preprocessing
from sklearn.preprocessing import OrdinalEncoder
from sklearn.impute import SimpleImputer
import numpy as np
import pandas as pd
def data_enc(dataset):
'''
Encodes categorical data with an ordinal encoder. Can extend to
do one-hot encoding.
Parameters
==========
dataset: pandas dataframe without nans.
Returns
==========
X_data_enc: pandas df with encoded features.
y_data_enc: numpy array with encoded labels.
'''
X_data = dataset.iloc[:,:-2]
y_data = dataset.iloc[:,-2] # label
issue_id = dataset.iloc[:,-1] # issue id
# encode categorical labels
label_enc = preprocessing.LabelEncoder()
# replace nan with a 'no label' category
y_data.fillna(value='no_label', inplace=True)
y_data_enc = label_enc.fit_transform(y_data.values)
# y_label_inv_trans = label_enc.inverse_transform(y_data_enc)
# encode features
# print the dtypes
# X_data.dtypes.value_counts()
# select the subset that is dtype object
X_data_cat = X_data.select_dtypes(include='O')
# select the subset that is dtype float64
X_data_num = X_data.select_dtypes(include='float64')
# now convert X_data_cat to integers, do one-hot later
feat_enc = OrdinalEncoder()
X_data.fillna(value=np.nan, inplace=True)
X_data_cat_enc = feat_enc.fit_transform(X_data_cat)
X_data_cat_enc = pd.DataFrame(X_data_cat_enc, columns=X_data_cat.columns)
# join arrays
# X_data_enc = pd.concat([X_data_cat_enc, X_data_num], axis=1)
X_data_enc = X_data_cat_enc.join(X_data_num)
return X_data_enc, y_data_enc