Skip to content

Latest commit

 

History

History
305 lines (259 loc) · 43 KB

File metadata and controls

305 lines (259 loc) · 43 KB

Kaggle Elo Merchant Category Recommendation

Competition

Description

Imagine being hungry in an unfamiliar part of town and getting restaurant recommendations served up, based on your personal preferences, at just the right moment. The recommendation comes with an attached discount from your credit card provider for a local place around the corner!

Right now, Elo, one of the largest payment brands in Brazil, has built partnerships with merchants in order to offer promotions or discounts to cardholders. But do these promotions work for either the consumer or the merchant? Do customers enjoy their experience? Do merchants see repeat business? Personalization is key.

Elo has built machine learning models to understand the most important aspects and preferences in their customers’ lifecycle, from food to shopping. But so far none of them is specifically tailored for an individual or profile. This is where you come in.

In this competition, Kagglers will develop algorithms to identify and serve the most relevant opportunities to individuals, by uncovering signal in customer loyalty. Your input will improve customers’ lives and help Elo reduce unwanted campaigns, to create the right experience for customers.

Data

train.csv

Columns Description
card_id Unique card identifier
first_active_month 'YYYY-MM', month of first purchase
feature_1 Anonymized card categorical feature
feature_2 Anonymized card categorical feature
feature_3 Anonymized card categorical feature
target Loyalty numerical score calculated 2 months after historical and evaluation period

historical_transactions.csv and new_merchant_period.csv

these two files contain the same variable and the difference between the two tables only concern the position with respect to a reference date

Columns Description
card_id Card identifier
month_lag month lag to reference date
purchase_date Purchase date
authorized_flag Y' if approved, 'N' if denied
category_3 anonymized category
installments number of installments of purchase
category_1 anonymized category
merchant_category_id Merchant category identifier (anonymized)
subsector_id Merchant category group identifier (anonymized)
merchant_id Merchant identifier (anonymized)
purchase_amount Normalized purchase amount
city_id City identifier (anonymized)
state_id State identifier (anonymized)
category_2 anonymized category

merchants.csv

Columns Description
merchant_id Unique merchant identifier
merchant_group_id Merchant group (anonymized )
merchant_category_id Unique identifier for merchant category (anonymized )
subsector_id Merchant category group (anonymized )
numerical_1 anonymized measure
numerical_2 anonymized measure
category_1 anonymized category
most_recent_sales_range Range of revenue (monetary units) in last active month --> A > B > C > D > E
most_recent_purchases_range Range of quantity of transactions in last active month --> A > B > C > D > E
avg_sales_lag3 Monthly average of revenue in last 3 months divided by revenue in last active month
avg_purchases_lag3 Monthly average of transactions in last 3 months divided by transactions in last active month
active_months_lag3 Quantity of active months within last 3 months
avg_sales_lag6 Monthly average of revenue in last 6 months divided by revenue in last active month
avg_purchases_lag6 Monthly average of transactions in last 6 months divided by transactions in last active month
active_months_lag6 Quantity of active months within last 6 months
avg_sales_lag12 Monthly average of revenue in last 12 months divided by revenue in last active month
avg_purchases_lag12 Monthly average of transactions in last 12 months divided by transactions in last active month
active_months_lag12 Quantity of active months within last 12 months
category_4 anonymized category
city_id City identifier (anonymized )
state_id State identifier (anonymized )
category_2 anonymized category

Evaluation

Root Mean Squared Error (RMSE)

Directory Structure

  • raw_data/: data download from kaggle
  • data/: preprocessed pickle data
  • deal/: filter/project part of the data
  • feat/: features we've made
  • model/: LightGBM model
  • prediction/: prediction result
  • feature.py: building features
  • train_model.py: training model
    • online
      • 0: 5-fold cross-validation
      • 1: train model + predict result

Usage

Downloading Dataset

Put csv files into raw_data/

  • historical_transactions.csv
  • merchants.csv
  • new_merchant_transactions.csv
  • train.csv
  • test.csv

Feature Engineering

python3 feature.py

Training Model

python3 train_model.py

Others Kaggle Kernel Collection

Knowing data distribution

Good feature engineering example

Result

First Model Training

Parameters

seed = 333
EARLY_STOP = 300
OPT_ROUNDS = 691
MAX_ROUNDS = 3000

params = {
    'boosting': 'gbdt',
    'metric': 'rmse',
    'objective': 'regression',
    'learning_rate': 0.01,
    'max_depth': -1,
    'min_child_samples': 20,
    'max_bin': 255,
    'subsample': 0.85,
    'subsample_freq': 10,
    'colsample_bytree': 0.8,
    'min_child_weight': 0.001,
    'subsample_for_bin': 200000,
    'min_split_gain': 0,
    'reg_alpha': 0,
    'reg_lambda': 0,
    'num_leaves':63,
    'seed': seed,
    'nthread': 8
}

Features

features: Index(['feature_1', 'feature_2', 'feature_3', 'elapsed_time',
       'authorized_flag_mean', 'hist_transactions_count',
       'hist_category_1_sum', 'hist_category_1_mean',
       'hist_category_2_1.0_mean', 'hist_category_2_2.0_mean',
       ...
       'installments_purchase_amount_max', 'installments_purchase_amount_std',
       'city_id_purchase_amount_mean', 'city_id_purchase_amount_min',
       'city_id_purchase_amount_max', 'city_id_purchase_amount_std',
       'category_1_installments_mean', 'category_1_installments_min',
       'category_1_installments_max', 'category_1_installments_std'],
      dtype='object', length=161)

Training Logs

online = 0: 5-fold cross-validation

[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 161532, number of used features: 161
[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 161532, number of used features: 161
[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 161532, number of used features: 161
[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 161532, number of used features: 161
[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 161532, number of used features: 161
[LightGBM] [Info] Start training from score -0.389536
[LightGBM] [Info] Start training from score -0.393868
[LightGBM] [Info] Start training from score -0.396439
[LightGBM] [Info] Start training from score -0.385136
[LightGBM] [Info] Start training from score -0.403205
[50]    cv_agg's rmse: 3.75637 + 0.0747325
[100]   cv_agg's rmse: 3.71579 + 0.0701915
[150]   cv_agg's rmse: 3.69621 + 0.0671517
[200]   cv_agg's rmse: 3.68714 + 0.0646511
[250]   cv_agg's rmse: 3.6808 + 0.06396
[300]   cv_agg's rmse: 3.67668 + 0.0634267
[350]   cv_agg's rmse: 3.67342 + 0.0629173
[400]   cv_agg's rmse: 3.67098 + 0.0623137
[450]   cv_agg's rmse: 3.66922 + 0.061808
[500]   cv_agg's rmse: 3.66794 + 0.0613145
[550]   cv_agg's rmse: 3.66691 + 0.0611108
[600]   cv_agg's rmse: 3.66639 + 0.0610175
[650]   cv_agg's rmse: 3.66585 + 0.0606831
[700]   cv_agg's rmse: 3.66518 + 0.0606471
[750]   cv_agg's rmse: 3.66498 + 0.0604896
[800]   cv_agg's rmse: 3.66496 + 0.0602144
[850]   cv_agg's rmse: 3.66509 + 0.0600761
[900]   cv_agg's rmse: 3.66529 + 0.0601632
[950]   cv_agg's rmse: 3.66534 + 0.0602262
[1000]  cv_agg's rmse: 3.66567 + 0.0601947
[1050]  cv_agg's rmse: 3.66571 + 0.0601137
{'rmse-mean': [3.846791092658889, 3.8440041793576554, 3.841206089451326, 3.838599998200967, 3.836108047410305, 3.83356760403212, 3.8311344841068995, 3.828647541813279, 3.826211584740758, 3.8239014467412376, 3.8214886966966715, 3.8191241747716753, 3.8168672132497137, 3.8145346129526545, 3.8123020068864397, 3.8103104953380913, 3.808302594541594, 3.8062542942725366, 3.8043769729008448, 3.8024235732016756, 3.800384866205588, 3.798277383976221, 3.796379591316074, 3.7944272016538285, 3.792528929879373, 3.7907383124740965, 3.7888782375643637, 3.787122742601393, 3.7854343147544625, 3.783856277342686, 3.7822429141032976, 3.7806495142974774, 3.779084631330572, 3.777545166560324, 3.7759928217230616, 3.7743671542924795, 3.773061956030401, 3.7716766306102327, 3.770222466132619, 3.7688253652105246, 3.7674048476613984, 3.7660395538701814, 3.764810891308044, 3.763497466558255, 3.7622323691769353, 3.760979968339683, 3.759828202743139, 3.758701465007976, 3.757525443918742, 3.756371794380308, 3.7550902444119245, 3.7538963384692097, 3.7527234382489745, 3.7517143620681566, 3.750653218046254, 3.7495870046994533, 3.748457998231742, 3.747288808488112, 3.7462378503098757, 3.7452008013414257, 3.7441865725743897, 3.7431643282383065, 3.7421941091177073, 3.7411322598489867, 3.740195150342637, 3.7394186488420864, 3.7384101780767183, 3.7375047685315934, 3.7366126475995616, 3.735709776860099, 3.73491687685116, 3.734149652971552, 3.733350919753491, 3.7325911561599545, 3.7317258884961433, 3.7310303223092363, 3.7301513612548343, 3.7294408006620587, 3.728825719982139, 3.728086883625381, 3.7273319729526184, 3.726702388498567, 3.726039555397996, 3.725376567656208, 3.724688457114852, 3.7240599817301665, 3.723403287575818, 3.7227888949190318, 3.7220889801614154, 3.7214364374842654, 3.720781348995671, 3.7201529309986725, 3.7195292072273105, 3.7189165611780117, 3.718396101005991, 3.7178316560617213, 3.7173959942237964, 3.716881340699063, 3.7163321586033033, 3.71578956957715, 3.715266835215816, 3.7147712026090844, 3.714225730435367, 3.7136909120568817, 3.7130909136330112, 3.712539787047613, 3.712010950144645, 3.7115639729537113, 3.7110546985829087, 3.7106742013820826, 3.71015789907671, 3.709583867953031, 3.70910467439477, 3.7085966530710683, 3.7081746285164456, 3.707713614805219, 3.707271535590884, 3.7068561026375044, 3.7064356391097086, 3.70600713619078, 3.7056231324985935, 3.705197910338009, 3.704864091289005, 3.70451039897164, 3.704098637339105, 3.703693068090871, 3.7033500259601753, 3.703086072089146, 3.70266105009987, 3.702367538063455, 3.7019518730871317, 3.7015611696312285, 3.70121331759875, 3.7008724225126173, 3.7005491354861064, 3.7001369701667004, 3.6998190999513128, 3.6994286802994303, 3.699139587254327, 3.6988775185199785, 3.6985859132843784, 3.698306030902292, 3.698050706814661, 3.69780329167694, 3.697552324097819, 3.697251565975614, 3.6969763156644477, 3.696726144365038, 3.696491028588081, 3.696212267770862, 3.695944236759535, 3.6957009003030556, 3.69546827229638, 3.695250389315045, 3.695037451485072, 3.6948106539178687, 3.6945621081061146, 3.6943895613328506, 3.6941858114857866, 3.694013746090981, 3.6938448453824577, 3.6935988769929935, 3.693376540801606, 3.6932246421631816, 3.6931140592373692, 3.692893850759254, 3.6928013538121895, 3.6926666617252737, 3.6924518694846626, 3.6922446305407597, 3.692016802775825, 3.691783766796795, 3.691646678727352, 3.691506545060663, 3.6913071568151246, 3.6911337296361966, 3.6909556148719838, 3.6907281176357096, 3.690555994796528, 3.6903893245919677, 3.690171343560274, 3.6899704109320957, 3.6898281383552196, 3.6896106069370673, 3.6894055421682928, 3.689246591338423, 3.6890647401687566, 3.688881151782404, 3.6887101350053917, 3.6884989939409385, 3.6883860315095163, 3.688228410442023, 3.6880806157866717, 3.687924333009639, 3.6877421729022197, 3.6875947370390056, 3.6874915746042056, 3.6873520293232795, 3.6872236736420305, 3.687144832512066, 3.686948253251971, 3.6867676307233084, 3.6865975763215197, 3.686412286058117, 3.686266729987982, 3.6862095050108588, 3.6861139709165145, 3.6859704364679886, 3.685844688692756, 3.685687679524348, 3.68552085035146, 3.685443608545063, 3.6852489069574843, 3.6851013661428262, 3.684932388982496, 3.6848087382673307, 3.684675458279456, 3.684517155006433, 3.68437453464107, 3.684248451325002, 3.6840821390044787, 3.683948221498484, 3.6838074267329945, 3.683693517296085, 3.6834916413555163, 3.683415497158682, 3.6833101586289354, 3.6831314380027003, 3.6829765519786655, 3.6828287894889122, 3.682710985095293, 3.6825883436029736, 3.6825060825014, 3.682415200777619, 3.6823442905297434, 3.6822533591110025, 3.6821543252791242, 3.6820303443366895, 3.6819129124054286, 3.681813188493237, 3.681723428142611, 3.6816490499818997, 3.6815323361417027, 3.6814468313071567, 3.681339337607138, 3.681239147156254, 3.6810697014692657, 3.6809698208416273, 3.6808488869223637, 3.6808048205217636, 3.680735448905453, 3.6806788712226615, 3.6806363219682074, 3.6805047144306826, 3.6804641386363883, 3.6803814021113808, 3.6803127502078503, 3.6802632629518754, 3.680159625892503, 3.6800780478996318, 3.6799862776292436,3.6798809147447513, 3.679760870289857, 3.6796602453268648, 3.6796225653433496, 3.6795390162992554, 3.6794400847305866, 3.679373067695271,3.679311793603074, 3.6792368054084115, 3.679172522113446, 3.679034346433499, 3.678913544989065, 3.67880166370346, 3.6786591097640957, 3.6785747364767554, 3.6784519886088134, 3.678352694079996, 3.6783010619658527, 3.678206651014161, 3.678123695099437, 3.678004496488213, 3.677883006186291, 3.6777407005726688, 3.677684035091519, 3.6775425987997474, 3.6774274732824628, 3.677330623251651, 3.6772847432152758, 3.6772194078525, 3.677179200424534, 3.6771540012434016, 3.6771182769322204, 3.677013743638471, 3.6769573245080034, 3.6769386079276183, 3.67687851940374, 3.6767880549904133, 3.67672177967802, 3.6766750826309305, 3.6765833252543465, 3.676512540506038, 3.676454483771784, 3.6763712358240683, 3.6762988932784295, 3.6762184471998522, 3.676175677164461, 3.6761241343549598, 3.6760945979671398, 3.676032554589406, 3.675992161555226, 3.6759487385937106, 3.675883261634303, 3.67579507485019, 3.675746756947573, 3.6756465387838517, 3.675558563373477, 3.6754812534690586, 3.6754185791897123, 3.6753807889692496, 3.675275397789437, 3.675145160298561, 3.675030303795996, 3.6749793795178336, 3.6749285642213274, 3.6748922851506918, 3.674795133932266, 3.674685907723565, 3.674636101736982, 3.6745957655102273, 3.674470500160865, 3.6743992100734717, 3.6743824859696352, 3.674315861855316, 3.674263600908167, 3.6741708656253502, 3.674107555404683, 3.67405075324845, 3.6740025524880906, 3.673941097672695, 3.673879638350832, 3.6737678818789283, 3.673745761341413, 3.673658794583132, 3.6736011746493618, 3.6735563166893015, 3.67349910727546, 3.6734557441864446, 3.6734403181871813, 3.6734178569854876, 3.6733829310976516, 3.6732818646794656, 3.6732382978277736, 3.6731077778465306, 3.6730373077258704, 3.6729541275632736, 3.6728866265568967, 3.6728550919500713, 3.672830894068548, 3.672788966180024, 3.672744945663672, 3.6726886895544837, 3.672662534512095, 3.67259833685736, 3.672528104053319, 3.672477563191392, 3.6724528521232913, 3.672451953372336, 3.6723774625231456, 3.6723135110662604, 3.672294771891096, 3.672288583393395, 3.672238306060148, 3.6721624838581777, 3.6720955221783824, 3.6720434143235408, 3.6720478553745592, 3.672013255468413, 3.6719728984659605, 3.671896411388457, 3.67185492561904, 3.6717714099453937, 3.6717530616548024, 3.6717507225024333, 3.6717228108655418, 3.671649347993108, 3.6715777345951373, 3.6715586342726025, 3.6715065523120614, 3.6714634441715583, 3.6714259261037308, 3.6713685745873192, 3.67135419550175, 3.671287544757864, 3.67124569445883, 3.671193700100941, 3.6711522699061208, 3.671096291119465, 3.6710341670303395, 3.670983832556833, 3.670973369840142, 3.6709478492776193, 3.670895249961499, 3.6708476462771658, 3.670804229530688, 3.670744239242226, 3.67072994516325, 3.670693931172738, 3.670632994848019, 3.6706000280174265, 3.6705605033943316, 3.670530583311286, 3.670462688449961, 3.6704445731524906, 3.670410823599761, 3.6704105312789714, 3.670378156439333, 3.670332411405429, 3.6702912466672375, 3.6702734199699614, 3.670212987469223, 3.6701521173782874, 3.6701422135529937, 3.670153891227089, 3.6701296578050617, 3.6700752487949266, 3.6700529410885983, 3.670049505553301, 3.670005425944346, 3.669969362424747, 3.669928281008932, 3.6698880390116804, 3.6698535536650825, 3.6698168728484495, 3.669789195855955, 3.6697287520370723, 3.6696635770941426, 3.669601830729932, 3.66954760323989, 3.669511820417239, 3.669459277259667, 3.669442955464332, 3.6694294441339137, 3.6694491748324545, 3.6694245563099237, 3.6694085079387593, 3.669382544194776, 3.6693415242639973, 3.669290407572192, 3.6692189146234684, 3.669164511316312, 3.669104292242411, 3.6690854290220876, 3.66903617148619, 3.6690121197217733, 3.6689610352430213, 3.6689468250299315, 3.668928357618113, 3.6689264173404026, 3.668924521212334, 3.6688926995935427, 3.668873786227709, 3.6688267956415705, 3.668802686002922, 3.668769525287341, 3.668718434007425, 3.6687316308923386, 3.668714445823774, 3.668708052625702, 3.6686748807327922, 3.66865795258864, 3.668606420878067, 3.6685748578472337, 3.668553310280436, 3.668532612118316, 3.6685068534890624, 3.66847405784011, 3.668444724684001, 3.6683942345675256, 3.66838236915775, 3.668341772779393, 3.6683017296854543, 3.6682934361436326, 3.668261006467888, 3.668249696333681, 3.6682505195055035, 3.668231757636954, 3.668239750415195, 3.668187736549613, 3.6682104787368544, 3.6682040108383944, 3.668151968242958, 3.6681085802310562, 3.6680968376427083, 3.6680916257719374, 3.6680632459395013, 3.668013167506468, 3.6679920587276165, 3.667956825261706, 3.6679381713503125, 3.6678833117829965, 3.6678594130142828, 3.667808381035365, 3.6678161412715027, 3.667790239113804, 3.667789123991895, 3.6677876884690783, 3.6677671278240593, 3.6677759772137932, 3.667750317245923, 3.6677387029851287, 3.6677218157951073, 3.667698226231741, 3.6676731940841956, 3.6676300722226465, 3.667615953082496, 3.6676068596849043, 3.6675790012702043, 3.667569811370292, 3.667546032628781, 3.667520832336205, 3.6675185455589356, 3.6674958910679196, 3.667502617467604, 3.6674923381993048, 3.667471399064901, 3.6674314902622953, 3.6673900652705647, 3.667379546396939, 3.6673402897279863, 3.6673070836679784, 3.66727763242742, 3.6672977541019405, 3.667246714399554, 3.6671954677371934, 3.6671624693657123, 3.667110293181697, 3.667104211321162, 3.6670799416166466, 3.667033969648564, 3.6670262221513896, 3.6670030365973845, 3.667006434175454, 3.667001353994248, 3.666947531615507, 3.666952091585985, 3.6669387710255847, 3.666932861479208, 3.6669010254335754, 3.666913110091804, 3.666862701856556, 3.666903574576807,3.666937911897078, 3.66690840488681, 3.666898613805585, 3.666860049147931, 3.666824514449348, 3.666799446605405, 3.666805523590903, 3.6668142762160243, 3.6667861340274603, 3.666747361510262, 3.6667124244675704, 3.6666917671789627, 3.6666761804415025, 3.666666110562919, 3.6666340171049634, 3.6666420559943935, 3.6666372789427144, 3.6666224097147655, 3.6666249588256017, 3.666607654063718, 3.666621612287315, 3.6666348382264253, 3.6666105891623495, 3.6665993484532082, 3.6666052296743006, 3.6665845404495947, 3.66656255246061, 3.666587090861905, 3.666579707183943, 3.666563139950032, 3.666585192248527, 3.666598743375, 3.6666164297685184, 3.6665915452492484, 3.666563701071327, 3.66658961447916, 3.6665658529780374, 3.666567880615434, 3.6665431981537986, 3.6665146695174484, 3.6665168265383103, 3.666507166341127, 3.666495743157988, 3.666474102881692, 3.666460011264153, 3.6664377019152297, 3.6664100624192697, 3.66639038732283, 3.666359715840765, 3.666312606638231,3.6662856436282225, 3.666261156416348, 3.6662563436581435, 3.6662352271421197, 3.6662389242862745, 3.666199700965607, 3.6661592013698843,3.666162083358053, 3.666151192499663, 3.6661441116423914, 3.666156489272653, 3.666147230695303, 3.666160814307645, 3.666181875294769, 3.666165885751422, 3.6661479335344844, 3.6661750508546276, 3.666200232103436, 3.6661835199161317, 3.6661725869601574, 3.6661773740483192, 3.6661837954407517, 3.6661936443911536, 3.6661864082723334, 3.666185250975502, 3.6661895580115207, 3.6661753377064903, 3.6661525033661824, 3.6661001525432995, 3.6660885680308426, 3.6660628738332877, 3.6660365221951094, 3.6660246280154944, 3.666002741382448, 3.6659867554468106, 3.665959194333074, 3.6659158640371223, 3.6658853095689103, 3.6658560017402437, 3.6658405919000487, 3.6658505203094136, 3.6658237062961367, 3.6658253392252518, 3.6658207135886167, 3.66583078804006, 3.6658388777163182, 3.665829000809449, 3.665849970289888, 3.6658034987805808, 3.665760193816856, 3.6657371682704976, 3.6657072433731144, 3.665681988226305, 3.6656858945103736, 3.6656655144661867, 3.6656322739971423, 3.665614742841362, 3.665598126307791, 3.6655956147657234, 3.665586740167563, 3.66557503600309, 3.6655693715969777, 3.665558370477112, 3.6655320665898303, 3.665552877253488, 3.665534189235745, 3.665521974171353, 3.665527253614818, 3.6655054048626745, 3.665507222372214, 3.665465440051919, 3.6654469930180076, 3.6654346253551195, 3.665397564463705, 3.665377960076166, 3.6653807811956063, 3.6653633095123217, 3.665354480892783, 3.6653600612511674, 3.6653424011209017, 3.665309357746368, 3.6653408346199554, 3.6653401099991614, 3.6653092761493595, 3.665301330721676, 3.6652952425064513, 3.6652947904526543, 3.665293717260995, 3.665289403883604, 3.6652662206516586, 3.665272893119892, 3.665239651269812, 3.6652435447789236, 3.665206897389262, 3.665187741510196, 3.6651509151163695, 3.6651463291239907, 3.6651762632383673, 3.6651721996059328, 3.665177058868241, 3.6651522575993964, 3.665173974374844, 3.6651563322255525, 3.665134165569655, 3.6651345313402595, 3.66513593112368, 3.6651244767588294, 3.665065001698271, 3.66506298623053, 3.6650807880502847, 3.665076627439131, 3.6650900079694226, 3.665059540650946,3.665064060489115, 3.6650598651374304, 3.665064430760141, 3.6650463180429944, 3.6650168729340296, 3.6650476231661315, 3.6650439735142846,3.6650138012172357, 3.665020826286843, 3.665026255461787, 3.66503143572348, 3.665034062903035, 3.665053720526617, 3.665085138607465, 3.66510851306293, 3.665120066622799, 3.6651063286671013, 3.6650996930960416, 3.6650986831485626, 3.6651179116628425, 3.6650924586473757, 3.6650918146151232, 3.6651036723142005, 3.6650845357798283, 3.665051200615018, 3.6650437107534417, 3.665024652602719, 3.6650347407081805, 3.66499764324578, 3.6649878519573074, 3.664975026456318, 3.6649805312769623, 3.664965288181399, 3.66495804626265, 3.6649787462464274, 3.6650113550598973, 3.664998944477766, 3.6650316859789362, 3.6650542590272766, 3.6650570879864537, 3.6650763688374135, 3.6650838850272836, 3.6651036219127704, 3.6651058493189814, 3.665106418498161, 3.6650975908572834, 3.6650920516985197, 3.665121300749314, 3.6651139368219203, 3.665104768294244, 3.665121470650567, 3.6651447602756138, 3.665159849654471, 3.6651751804959063, 3.6651867467623567, 3.6651757380210555, 3.6651552991956238, 3.6651296909963804, 3.6650980759792597, 3.665068926108033, 3.6650681524667603, 3.6650289135491425, 3.6650247655607515, 3.6650139758670646, 3.6650226363136262, 3.6650408295559678, 3.665028958992136, 3.665050514055841, 3.665022472477981, 3.665037519263977, 3.664997980790494, 3.6649926703830618, 3.664977627008296, 3.6649791369278804, 3.6649473513551585], 'rmse-stdv': [0.07931041092630824, 0.07920690593281034, 0.07909851701638253, 0.07888677810824593, 0.07877046642777405, 0.07868026256901398, 0.07859517392364368, 0.07845560033084185, 0.07838260933262627, 0.07826933484232712, 0.078132355490509, 0.07802811022836982, 0.07799031240955123, 0.07775556012105743, 0.07773302457385509, 0.07766457338477921, 0.0776568426734956, 0.0775381861651184, 0.07747966009843012, 0.07742317860027784, 0.07729641391664734, 0.07721275040386988, 0.07713558172439063, 0.0770600898612606, 0.07693720839047885, 0.07692208171199723, 0.07691340839872497, 0.07686743980918471, 0.07675933341460986, 0.07668385648141647, 0.07670217366346385, 0.07652299922857692, 0.07647519252666982, 0.076308743557145, 0.07625123522162722, 0.07623163290638356, 0.07617608542404122, 0.07611712223947575, 0.07603423721028475, 0.07594518665433038, 0.07586384808443952, 0.07587690705099716, 0.07586940893593058, 0.07565737679482923, 0.07553549618590046, 0.07527214526697204, 0.07510008164902975, 0.07495366716976935, 0.07480766844252741, 0.07473245831548744, 0.07462370042042019, 0.0744295816436547, 0.07443930290900039, 0.07428770827957612, 0.07422458003036102, 0.07412112642510646, 0.07400039827958672, 0.07392062544172077, 0.07383919294920079, 0.07379132489969983, 0.07379623913313636, 0.07378178375058575, 0.07365114545838232, 0.07354977491284133, 0.07337983161713459, 0.0732433218261337, 0.07314170762418244, 0.07306905670320983, 0.07302330414741436, 0.07286395952592488, 0.07272923121687011, 0.0726459815583192, 0.07249650500297654, 0.07241288658308995, 0.07230648267533336, 0.07221778741677404, 0.07210614306503677, 0.0720028653794281, 0.07195093931448804, 0.07184894359472167, 0.07187651225008203, 0.07168295021528795, 0.0716206864682124, 0.07152084118621528, 0.07142267032507887, 0.07125533621320192, 0.07125333744376597, 0.07125045826796282, 0.07125512017016249, 0.07112203500080347, 0.07106646236286468, 0.07097255535136762, 0.07078849583858217, 0.0706597722982641, 0.07059553047144138, 0.07051634089880066, 0.07042384399496092, 0.07041234413082756, 0.07030454395251091, 0.07019154731260382, 0.07008312570955762, 0.07001091650313053, 0.06998099412812961, 0.06988153253135547, 0.06978075639748224, 0.06969949460368638, 0.06956250197421135, 0.06960394986643985, 0.06955995149385402, 0.06956736833696076, 0.06952211108768985, 0.06942407744520468, 0.069382251063055, 0.06939905631502909, 0.06929379527803091, 0.06915479858764932, 0.06910367700810793, 0.06909908430184493, 0.06905289715360996, 0.06891481165830368, 0.06884440643695236, 0.06876727397789142, 0.06881752268568779, 0.06879732872923182, 0.06880199545176403, 0.06876610832434965, 0.06876907543936855, 0.06873455617126792, 0.06881468092808771, 0.0687336586401322, 0.06871926343224302, 0.06866543884272376, 0.06847860088049885, 0.06847756794932869, 0.06844523420533298, 0.06832410650600919, 0.06822878727511805, 0.06807641035413928, 0.06803303569490404, 0.06796062713102549, 0.06785119238029429, 0.06777762216011593, 0.06772297857092577, 0.06763115815059798, 0.0675323243819175, 0.06746376568396895, 0.06744401600189744, 0.06740038379712293, 0.0672368246179285, 0.06715169045750874, 0.0670781542773098, 0.06699698975798508, 0.06687441376781758, 0.06685817809859353, 0.06682437590355254, 0.06673556775059555, 0.06666329054541746, 0.06656514955202622, 0.06651784831469382, 0.06638299529173491, 0.06628823953641805, 0.06624279935676242, 0.06614979581561099, 0.06607969899721995, 0.06603514904760625, 0.06597054978107579, 0.06592064146886713, 0.06581107863604695, 0.06581126620499755, 0.06573045572218618, 0.0656951964776434, 0.06568886203445141, 0.06562058394620872, 0.06562297782421185, 0.06561603730840998, 0.06554375268058199, 0.06545756094190822, 0.06544189275299367, 0.06535784188155051, 0.06533880901250395, 0.06526606266316998, 0.06525819832381281, 0.06520173502195079, 0.06516545166422316, 0.0651788456712322, 0.06511256188792325, 0.06508118688234649, 0.0650396148543542, 0.06503278763631688, 0.06508062883507168, 0.06504671518505395, 0.06492956822372398, 0.0648900745763215, 0.06481883523724609, 0.06481607760170972, 0.06477757179821661, 0.06471487702311587, 0.06468268876419225, 0.06464873183572374, 0.06465113403596394, 0.06459536408369539, 0.06457063463223843, 0.06448155187092561, 0.06451933064510643, 0.06451026812909774, 0.0644503087650833, 0.06443913109717662, 0.06435522956733684, 0.0642739781271579, 0.06422762355238716, 0.06420628003794294, 0.06417507684980704, 0.06414488378418592, 0.06411824147903988, 0.06413337606193312, 0.06411019210385656, 0.0641214793397865, 0.06417881606047637, 0.0641909835535811, 0.0641867797171103, 0.06417355231646793, 0.06409053134449964, 0.06409266234375141, 0.06403689414154426, 0.06405709466205672, 0.0640491885902071, 0.06404630914365947, 0.06401709869131175, 0.06403058368611271, 0.0639772068647033, 0.06397007118391625, 0.06398243759449752, 0.06396034914734301, 0.06394736015277949, 0.0639405283501696, 0.06396032287155357, 0.06399617375721411, 0.06397865790196307, 0.06395655116823713, 0.06396641137711864, 0.06392405951791637, 0.0639076415295798, 0.063963464294579, 0.06401022357962426, 0.06402564439447464, 0.06399279894801797, 0.06396605339508399, 0.06396798039375293, 0.06393752871220654, 0.06395999704840355, 0.06396405969842028, 0.06391594720946628, 0.06390127436428963, 0.0638841358303242, 0.06382420344293721, 0.06386092275901702, 0.06383769344222374, 0.06384233830174219, 0.0637995909767737, 0.0637695419750689, 0.06374108574727172, 0.06371938554124397, 0.06369584224832464, 0.06375509580496411, 0.06380904877440616, 0.06378225806023809, 0.0637494029268553, 0.0637599483303033, 0.06375043874254419, 0.06368442085241127, 0.06370045098770254, 0.0636664754300372, 0.06365088987194432, 0.06364979370656844, 0.06368542847278807, 0.06371707683786915, 0.06366305546979302, 0.06364344983667145, 0.06362497765460512, 0.06359227607046815, 0.06356449518793232, 0.06358451739068398, 0.06358819234781987, 0.06361218013000758, 0.06363795386334999, 0.06366473393099602, 0.06365789191840174, 0.06367500046636773, 0.0636946391324315, 0.06370247865254494, 0.06371667623337876, 0.06365932312268796, 0.06360467290563668, 0.06358864746988649, 0.06354738168679916, 0.06355220844737385, 0.06349378839544728, 0.06347153155694112, 0.06344565087925368, 0.06342674191555583, 0.06340195785930822, 0.0633821181959605, 0.06330527447543084, 0.06329543651552678, 0.0633050523150944, 0.06326052718817037, 0.06326321120430299, 0.0632059816495398, 0.06318020929975708, 0.0631882521942194, 0.06317059535998898, 0.06317505851231695, 0.06315734671958488, 0.06313738760827083, 0.06306916786014617, 0.06307813997963777, 0.06305750658847811, 0.06306050549329363, 0.06304850328342167, 0.06301404005298929, 0.06300106083573571, 0.06301346883478467, 0.06303125833676673, 0.06304652622002972, 0.0630155597516176, 0.06300987855905928, 0.06294605246738061, 0.06293383477419533, 0.0628783492078818, 0.06286770322289781, 0.06293282957641522, 0.06294199480506504, 0.06296140317216412, 0.06297124011259822, 0.0629384596622589, 0.06297694790563878, 0.06296325237934676, 0.06294133927678958, 0.0629193978665398, 0.06296325136645806, 0.06300220382172084, 0.06297200675788824, 0.06293551123393039, 0.06293197792613146, 0.0629147353713099, 0.06294428231334376, 0.06294925394267363, 0.06292003919956429, 0.06293104017095894, 0.06291728162681196, 0.06287220789693486, 0.06288106626386326, 0.06285260270661151, 0.062845104577393, 0.0628088570008898, 0.06274798568171104, 0.06273981271358757, 0.06269890597877051, 0.06270058906948506, 0.06265615393303305, 0.06265429872774955, 0.06266019778217018, 0.06261051344455697, 0.06263166647070637, 0.06270858009808533, 0.06269552362105897, 0.06267488455894897, 0.06267871968773148, 0.06264953751113898, 0.06267483344407679, 0.06269181631872411, 0.06274132379350603, 0.0627756241978542, 0.06278907042868852, 0.06273867561792829, 0.06273737897830009, 0.06273454828096922, 0.06271708424670483, 0.06272710319662499, 0.06273953027614637, 0.06271536523583075, 0.06266600148287822, 0.06268432083045086, 0.0626885635921372, 0.06268059479089856, 0.06262998137553989, 0.0625833946176769, 0.06257365142878622, 0.06256916689154494, 0.06255118590659442, 0.06256528705423635, 0.06253803126708432, 0.06253066713792547, 0.06251694022561766, 0.06251939065354627, 0.062469047648191486, 0.062462372188757255, 0.06244154490514718, 0.06238726285361589, 0.06231371494285115, 0.06229582109026003, 0.06229915522587306, 0.062321899614500076, 0.06233346548769044, 0.062300678543250464, 0.062302665701734955, 0.06229729299712619, 0.0622955690284105, 0.06227516474291276, 0.06228971332496101, 0.06229508334403869, 0.06232455515188602, 0.062317284522257294, 0.06231194649018429, 0.06229895249522079, 0.0622971348123528, 0.06231024708096255, 0.062320487098785834, 0.062331666633788925, 0.06236123198876739, 0.062328973856765425, 0.06229992551771514, 0.06233709460084829, 0.06230730802661221, 0.06231508298198461, 0.06232058960832423, 0.062274185787696425, 0.06222412079669852, 0.06217910500060761, 0.062176207122274355, 0.06216365250130667, 0.06213579605515021, 0.06211492765561657, 0.06209340054217239, 0.06210098780928776, 0.06206433029847696, 0.06204136494453992, 0.062020853917852586, 0.06202604994610573, 0.062008967156386895, 0.06198836280123066, 0.061970808909142985, 0.061954662425101906, 0.06195777185009929, 0.06194506590740291, 0.06189977281216914, 0.06186702999033739, 0.0618459226640462, 0.06182877355689507, 0.06180803316257944, 0.061796282434218426, 0.06179608313863866, 0.06178618351960974, 0.061796485347020334, 0.061737525178680495, 0.06174548126189098, 0.0617249893501992, 0.06174983393051202, 0.06175505698383936, 0.06174365155758735, 0.061751210896560674, 0.06172209184289181, 0.06173417567067261, 0.06174704867331639, 0.0617323714565574, 0.06169673590268312, 0.06168620472698347, 0.061664805373162705, 0.06167689072256763, 0.06168481093872368, 0.061640683109201594, 0.061613928532610364, 0.06158732498316064, 0.061551916736568395, 0.06153013966550687, 0.0615197904223706, 0.06151301456425142, 0.06148674236750895, 0.06148815398837537, 0.061450644079553585, 0.061460894982239465, 0.06146556102304928, 0.06148891486238816, 0.061465239853048914, 0.061474241512476935, 0.06148401139652955, 0.061498412067142565, 0.06146000077969304, 0.061419579794991574, 0.061386854324383906, 0.061352261723002864, 0.061315884695370956, 0.06127799430751481, 0.06129936524563021, 0.06131601884739799, 0.061286134930679824, 0.06132387263560751, 0.06132503946324379, 0.06133038690956843, 0.061314547785367934, 0.06128833589384549, 0.061244974125699285, 0.06122479246189142, 0.06123800099408173, 0.06124895501657323, 0.061264286696428374, 0.061262877731518686, 0.06123880139852852, 0.06124279943249819, 0.06120885742775494, 0.061163824258030644, 0.06119601824170859, 0.06121282443744989, 0.06123891718337786, 0.06124266765659468, 0.06125008169721782, 0.06124553812345482, 0.061315149173016406, 0.06130969302347866, 0.061297232864233914, 0.06130440270814449, 0.06129762689807777, 0.061304737912735455, 0.061329058135717415, 0.06135113856297154, 0.06134053837791483, 0.06136993945748697, 0.061397801918918735, 0.0613912919338384, 0.061395471017487074, 0.0613837895593469, 0.0613718638796695, 0.061329326444369524, 0.06130922221518882, 0.06131095058942261, 0.0613302255975771, 0.06128867763308319, 0.06124358891960497, 0.06124166993825233, 0.061215557267587734, 0.06121928787226501, 0.06121165368531067, 0.061185366522850754, 0.06116901579965842, 0.06112815057449232, 0.0611410860284327, 0.06111455935942073, 0.06113223361670805, 0.06113817317112277, 0.06111075775641813, 0.061094271411253516, 0.061105653243061664, 0.061117275658450404, 0.06107934050527011, 0.06107045300838932, 0.06105712653178953, 0.061054488536542925, 0.06104444906545307, 0.061042687509948006, 0.06105258061796575, 0.06106373102404292,0.06107697515755152, 0.061038880966672905, 0.061022844317926254, 0.06100156412048075, 0.06098562274384361, 0.060974304591601934, 0.060971472317740326, 0.06101161674557252, 0.06101566167174485, 0.06101169270304892, 0.06099212317884583, 0.06100107575214925, 0.06100982794949751, 0.061007597438213955, 0.0609951666969438, 0.061023501887482165, 0.0610432966662379, 0.06105300987545295, 0.06103041959547268, 0.06101949414233413, 0.06098579876995218, 0.06098371058172654, 0.060966865750357285, 0.06096140734728738, 0.060926095983351046, 0.06089655505687029,0.06088810890484515, 0.06090782604914856, 0.060911788877035085, 0.06091906806309084, 0.06092969206353124, 0.06095321309121441, 0.06092270613936314, 0.06093844716455778, 0.060934185576441466, 0.06095848564537609, 0.06096359396825747, 0.060977184093724685, 0.061017450784654294, 0.06101053069125206, 0.06097235329637615, 0.06099549274904125, 0.060960385168178796, 0.06097765628424448, 0.06096964410543264, 0.06094652238372381, 0.060972204652507266, 0.0609779009753731, 0.060983993301206726, 0.0609834098329587, 0.06096532812078977, 0.06098112685397411, 0.06096383436348536, 0.06094895851154943, 0.06099170998202262, 0.0609746653058523, 0.06098507628490904, 0.06094697418244816, 0.06086984513711718, 0.06086784302902802, 0.06083745849422474, 0.06081310995893908, 0.06083782755870717, 0.060846501090353784, 0.06084634676567408, 0.06085747280467526, 0.06084849069600456, 0.06085422812260339, 0.060859394320753255, 0.06083903280545984, 0.060863983365511264, 0.06081876228969147, 0.06083695985125946, 0.06082677144692669, 0.060795335138041744, 0.06077880041785745, 0.06076398520659111, 0.06077435040342423, 0.06074784676056305, 0.06075679567171416, 0.06072556896814232, 0.06075193588119813, 0.060759832725304, 0.06072837294538868, 0.06074006712569503, 0.06072439195952892, 0.06071239943046766, 0.06070662956942947, 0.06068311895815334, 0.060680240767792666, 0.060685430593611776, 0.060669357808261354, 0.060689021608511244, 0.06068741771698748, 0.060682282801688074, 0.06069442884812372, 0.06070572091229592, 0.06072336191543669, 0.060738359716835076, 0.06076584823387941, 0.0607644568726263, 0.06076052866962052, 0.06078140735858508, 0.060793202120871005, 0.06079430250289489, 0.060817050299927414, 0.060796568070700455, 0.06080727419010952, 0.060820341627604656, 0.060816098896227945, 0.06084269869540958, 0.06084902687070403, 0.060819035690068815, 0.06082554400595899, 0.06080810219507775, 0.060801459322100855, 0.060810185954512375, 0.060795312255858595, 0.060801261618240454, 0.06078190661234788, 0.06074375346709775, 0.06075512529174697, 0.06073753105650308, 0.060736309605306356, 0.060696478385595685, 0.060690940404088796, 0.06066962859014833, 0.06062008440952685, 0.0606307476882179, 0.06061358026930564, 0.06059439466207298, 0.06060751517528783, 0.06063815848646656, 0.060615230820537706, 0.060641259572885874, 0.06062863271111946, 0.06063168573328826, 0.06065022657126427, 0.0606470689591999, 0.0606265507352707, 0.06061748176074948, 0.06060409058513166, 0.06057602890861767, 0.06055892697155751, 0.060567290899493385, 0.060552041360019675, 0.06053995862742951, 0.060530473740840945, 0.06053840172368208, 0.0605406230919433, 0.06053797006915977, 0.06053406417327716, 0.06055717540792762, 0.06059701800287594, 0.060569731734045715, 0.06058487654352979, 0.06056322065840739, 0.06053911428622848, 0.06054930685786003, 0.060533340362870114, 0.06056726399745214, 0.06055354632800221, 0.060530027195155774, 0.06051744732453805, 0.06052703315621592, 0.0605510537907219, 0.06055440416310998, 0.060527163497347616, 0.06051135723048723, 0.06050895585232583, 0.06052307239578646, 0.06053755486699781, 0.060517268744579036, 0.06053265646751285, 0.06051813293528566, 0.06052544581459705, 0.060523201054944804, 0.06053618384172529, 0.06052749157185034, 0.06052845776752201, 0.0605162646426093, 0.0605014250795538, 0.060493779567637865, 0.06049011675783695, 0.06049093237578379, 0.06050625462660343, 0.06048494813172184, 0.06048108002245098, 0.06048961482014331, 0.06047476158344083, 0.060451639741426574, 0.060433860196174756, 0.06043849346881115, 0.060403880918533846, 0.060379767027471394, 0.06036702730801588, 0.06031528200064098, 0.06031569409177476, 0.060303674577549926, 0.06032691597420693, 0.06030762265322313, 0.060302190383396195, 0.06028916312996075, 0.060288341667752245, 0.0603008322636515, 0.060309317769401564, 0.06032147101556946, 0.0603215516468106, 0.06033352324589672, 0.06033075583154857, 0.060310175453628746, 0.06029677889297209, 0.06027829518676438, 0.06029917151280519, 0.060313224620580225, 0.06033630388731373, 0.06030636765265159, 0.060321420235596605, 0.060312791805371954, 0.06028624068771449, 0.06028255053154871, 0.0602517815450513, 0.06022873794017447, 0.06023939217293422, 0.06021451153790995, 0.060209163474974806, 0.060215834322063976, 0.06022739487192495, 0.06023233504456186]}
[LightGBM] [Info] Total Bins 30206
[LightGBM] [Info] Number of data: 151437, number of used features: 161
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/lightgbm/basic.py:752: UserWarning: categorical_feature in param dict is overridden.
  warnings.warn('categorical_feature in param dict is overridden.')
[LightGBM] [Info] Start training from score -0.385543
Training until validation scores don't improve for 300 rounds.
[20]    train's rmse: 3.73268   valid's rmse: 3.93332
[40]    train's rmse: 3.67434   valid's rmse: 3.90038
[60]    train's rmse: 3.62643   valid's rmse: 3.87638
[80]    train's rmse: 3.5851    valid's rmse: 3.8586
[100]   train's rmse: 3.54945   valid's rmse: 3.84536
[120]   train's rmse: 3.51763   valid's rmse: 3.83526
[140]   train's rmse: 3.48927   valid's rmse: 3.82804
[160]   train's rmse: 3.46371   valid's rmse: 3.82288
[180]   train's rmse: 3.44067   valid's rmse: 3.8179
[200]   train's rmse: 3.41878   valid's rmse: 3.81444
[220]   train's rmse: 3.4002    valid's rmse: 3.81142
[240]   train's rmse: 3.38171   valid's rmse: 3.80832
[260]   train's rmse: 3.36452   valid's rmse: 3.80626
[280]   train's rmse: 3.34937   valid's rmse: 3.80481
[300]   train's rmse: 3.33371   valid's rmse: 3.80289
[320]   train's rmse: 3.31954   valid's rmse: 3.80129
[340]   train's rmse: 3.30582   valid's rmse: 3.79949
[360]   train's rmse: 3.29265   valid's rmse: 3.79876
[380]   train's rmse: 3.28022   valid's rmse: 3.7971
[400]   train's rmse: 3.26854   valid's rmse: 3.79627
[420]   train's rmse: 3.25736   valid's rmse: 3.79522
[440]   train's rmse: 3.24642   valid's rmse: 3.79481
[460]   train's rmse: 3.23632   valid's rmse: 3.79442
[480]   train's rmse: 3.22665   valid's rmse: 3.79349
[500]   train's rmse: 3.21596   valid's rmse: 3.79271
[520]   train's rmse: 3.20662   valid's rmse: 3.7924
[540]   train's rmse: 3.19818   valid's rmse: 3.79214
[560]   train's rmse: 3.1886    valid's rmse: 3.79188
[580]   train's rmse: 3.17928   valid's rmse: 3.79179
[600]   train's rmse: 3.17019   valid's rmse: 3.79153
[620]   train's rmse: 3.16159   valid's rmse: 3.79093
[640]   train's rmse: 3.15195   valid's rmse: 3.79108
[660]   train's rmse: 3.14403   valid's rmse: 3.79087
[680]   train's rmse: 3.13594   valid's rmse: 3.79066
[700]   train's rmse: 3.12764   valid's rmse: 3.79058
[720]   train's rmse: 3.1189    valid's rmse: 3.79098
[740]   train's rmse: 3.11117   valid's rmse: 3.79109
[760]   train's rmse: 3.10327   valid's rmse: 3.79106
[780]   train's rmse: 3.09654   valid's rmse: 3.79144
[800]   train's rmse: 3.0884    valid's rmse: 3.79145
[820]   train's rmse: 3.08165   valid's rmse: 3.79141
[840]   train's rmse: 3.07428   valid's rmse: 3.79161
[860]   train's rmse: 3.06665   valid's rmse: 3.79141
[880]   train's rmse: 3.05866   valid's rmse: 3.7914
[900]   train's rmse: 3.0525    valid's rmse: 3.79157
[920]   train's rmse: 3.04489   valid's rmse: 3.79182
[940]   train's rmse: 3.03753   valid's rmse: 3.79218
[960]   train's rmse: 3.03115   valid's rmse: 3.79213
[980]   train's rmse: 3.02477   valid's rmse: 3.79201
Early stopping, best iteration is:
[691]   train's rmse: 3.13174   valid's rmse: 3.79041
OPT_ROUNDS: 691

online = 1: submission

  • output
    • model
    • importance of feature
    • submit csv
[LightGBM] [Info] Total Bins 30298
[LightGBM] [Info] Number of data: 201917, number of used features: 161
[LightGBM] [Info] Start training from score -0.393636
[100]   train's rmse: 3.61348
[200]   train's rmse: 3.49735
[300]   train's rmse: 3.42535
[400]   train's rmse: 3.365
[500]   train's rmse: 3.31827
[600]   train's rmse: 3.27806

Score on Kaggle (root mean squared error): 3.702