-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhistoric-electricity-prices.R
75 lines (58 loc) · 3.19 KB
/
historic-electricity-prices.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
library("plyr") # split-apply-combine analysis
library("lubridate") # for dates and times
## Generate an R file of electricity market price data
## ===================================================
## Source: Elexon, Market index price data.
## (see DXX/XXXXXX)
## Units: GBP/MWh
## Output: A data frame, prices, with the following columns:
## sett.date - settlement date
## sett.period - settlement period
## datetime - start of settlement period as a datetime
## volume - volume of energy traded (MWh)
## price - price of energy trade (GBP/MWh)
## Notes: The date column is not in a standard format, so is read as a
## character vector and then converted using as.Date()
## mid.vintage <- "../data/Elexon-Prices/2012-02-18"
## Convenience function to load one file of market index data (mid)
load.mid <- function(f) {
read.csv(file = f,
header = TRUE,
col.name = c("d", "sett.period", "MIDP.id", "volume", "price"),
colClasses = c("character", "integer", "factor", "numeric", "numeric"))
}
## Downloads prior to 2010 contain dates as, eg, "31 December 2009".
## The 2010 download contains dates as, eg, "01-Jan-10".
## Downloads from 2011 onwards contain dates as, eg, "01-Jan-2010".
mid.1 <- rbind(load.mid("../data/Elexon-Prices/2012-02-18/0000001781_mid_2003.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001782_mid_2004.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001783_mid_2005.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001784_mid_2006.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001785_mid_2007.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001786_mid_2008.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000001787_mid_2009.csv")
)
mid.2 <- rbind(load.mid("../data/Elexon-Prices/2012-02-18/0000001788_mid_2010.csv")
)
mid.3 <- rbind(load.mid("../data/Elexon-Prices/2012-02-18/0000001819_mid_2011.csv"),
load.mid("../data/Elexon-Prices/2012-02-18/0000003874_mid_2012.csv")
)
mid.1 <- data.frame(sett.date = as.Date(mid.1$d, format = "%d %B %Y"),
subset(mid.1, select = -c(d)))
mid.2 <- data.frame(sett.date = as.Date(mid.2$d, format = "%d-%b-%y"),
subset(mid.2, select = -c(d)))
mid.3 <- data.frame(sett.date = as.Date(mid.3$d, format = "%d-%b-%Y"),
subset(mid.3, select = -c(d)))
mid <- idata.frame(rbind(mid.1, mid.2, mid.3)) # use immutable dataframe for speed
rm(mid.1, mid.2, mid.3) # Declutter namespace
## Compute average price across all data providers for each settlement
## period. TAKES A LONG TIME TO COMPLETE.
prices <- ddply(mid,
.(sett.date, sett.period),
summarise, volume = sum(volume), price = weighted.mean(price, volume),
.progress = "text"
)
## Add the time of the settlement period, taking into account the clock changes.
prices$datetime <- as.POSIXct(prices$sett.date, tz = "Europe/London") +
dhours((prices$sett.period - 1) * 0.5)
save(prices, data = "historic-electricity-prices.RData")