-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate.py
214 lines (176 loc) · 6.97 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Inference Stage 2
"""
import os, torch, random, cv2, torchvision, subprocess, librosa, datetime, tempfile, face_alignment
import numpy as np
import albumentations as A
import albumentations.pytorch.transforms as A_pytorch
from tqdm import tqdm
from pathlib import Path
from transformers import Wav2Vec2FeatureExtractor
from models.float.FLOAT import FLOAT
from options.base_options import BaseOptions
class DataProcessor:
def __init__(self, opt):
self.opt = opt
self.fps = opt.fps
self.sampling_rate = opt.sampling_rate
self.input_size = opt.input_size
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
# wav2vec2 audio preprocessor
self.wav2vec_preprocessor = Wav2Vec2FeatureExtractor.from_pretrained(opt.wav2vec_model_path, local_files_only=True)
# image transform
self.transform = A.Compose([
A.Resize(height=opt.input_size, width=opt.input_size, interpolation=cv2.INTER_AREA),
A.Normalize(mean=(0.5,0.5,0.5), std=(0.5,0.5,0.5)),
A_pytorch.ToTensorV2(),
])
@torch.no_grad()
def process_img(self, img:np.ndarray) -> np.ndarray:
mult = 360. / img.shape[0]
resized_img = cv2.resize(img, dsize=(0, 0), fx = mult, fy = mult, interpolation=cv2.INTER_AREA if mult < 1. else cv2.INTER_CUBIC)
bboxes = self.fa.face_detector.detect_from_image(resized_img)
bboxes = [(int(x1 / mult), int(y1 / mult), int(x2 / mult), int(y2 / mult), score) for (x1, y1, x2, y2, score) in bboxes if score > 0.95]
bboxes = bboxes[0] # Just use first bbox
bsy = int((bboxes[3] - bboxes[1]) / 2)
bsx = int((bboxes[2] - bboxes[0]) / 2)
my = int((bboxes[1] + bboxes[3]) / 2)
mx = int((bboxes[0] + bboxes[2]) / 2)
bs = int(max(bsy, bsx) * 1.6)
img = cv2.copyMakeBorder(img, bs, bs, bs, bs, cv2.BORDER_CONSTANT, value=0)
my, mx = my + bs, mx + bs # BBox center y, bbox center x
crop_img = img[my - bs:my + bs,mx - bs:mx + bs]
crop_img = cv2.resize(crop_img, dsize = (self.input_size, self.input_size), interpolation = cv2.INTER_AREA if mult < 1. else cv2.INTER_CUBIC)
return crop_img
def default_img_loader(self, path) -> np.ndarray:
img = cv2.imread(path)
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def default_aud_loader(self, path: str) -> torch.Tensor:
speech_array, sampling_rate = librosa.load(path, sr = self.sampling_rate)
return self.wav2vec_preprocessor(speech_array, sampling_rate = sampling_rate, return_tensors = 'pt').input_values[0]
def preprocess(self, ref_path:str, audio_path:str, no_crop:bool) -> dict:
s = self.default_img_loader(ref_path)
if not no_crop:
s = self.process_img(s)
s = self.transform(image=s)['image'].unsqueeze(0)
a = self.default_aud_loader(audio_path).unsqueeze(0)
return {'s': s, 'a': a, 'p': None, 'e': None}
class InferenceAgent:
def __init__(self, opt):
torch.cuda.empty_cache()
self.opt = opt
self.rank = opt.rank
# Load Model
self.load_model()
self.load_weight(opt.ckpt_path, rank=self.rank)
self.G.to(self.rank)
self.G.eval()
# Load Data Processor
self.data_processor = DataProcessor(opt)
def load_model(self) -> None:
self.G = FLOAT(self.opt)
def load_weight(self, checkpoint_path: str, rank: int) -> None:
state_dict = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
with torch.no_grad():
for model_name, model_param in self.G.named_parameters():
if model_name in state_dict:
model_param.copy_(state_dict[model_name].to(rank))
elif "wav2vec2" in model_name: pass
else:
print(f"! Warning; {model_name} not found in state_dict.")
del state_dict
def save_video(self, vid_target_recon: torch.Tensor, video_path: str, audio_path: str) -> str:
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
temp_filename = temp_video.name
vid = vid_target_recon.permute(0, 2, 3, 1)
vid = vid.detach().clamp(-1, 1).cpu()
vid = ((vid + 1) / 2 * 255).type('torch.ByteTensor')
torchvision.io.write_video(temp_filename, vid, fps=self.opt.fps)
if audio_path is not None:
with open(os.devnull, 'wb') as f:
command = "ffmpeg -i {} -i {} -c:v copy -c:a aac {} -y".format(temp_filename, audio_path, video_path)
subprocess.call(command, shell=True, stdout=f, stderr=f)
if os.path.exists(video_path):
os.remove(temp_filename)
else:
os.rename(temp_filename, video_path)
return video_path
@torch.no_grad()
def run_inference(
self,
res_video_path: str,
ref_path: str,
audio_path: str,
a_cfg_scale: float = 2.0,
r_cfg_scale: float = 1.0,
e_cfg_scale: float = 1.0,
emo: str = 'S2E',
nfe: int = 10,
no_crop: bool = False,
seed: int = 25,
verbose: bool = False
) -> str:
data = self.data_processor.preprocess(ref_path, audio_path, no_crop = no_crop)
if verbose: print(f"> [Done] Preprocess.")
# inference
d_hat = self.G.inference(
data = data,
a_cfg_scale = a_cfg_scale,
r_cfg_scale = r_cfg_scale,
e_cfg_scale = e_cfg_scale,
emo = emo,
nfe = nfe,
seed = seed
)['d_hat']
res_video_path = self.save_video(d_hat, res_video_path, audio_path)
if verbose: print(f"> [Done] result saved at {res_video_path}")
return res_video_path
class InferenceOptions(BaseOptions):
def __init__(self):
super().__init__()
def initialize(self, parser):
super().initialize(parser)
parser.add_argument("--ref_path",
default=None, type=str,help='ref')
parser.add_argument('--aud_path',
default=None, type=str, help='audio')
parser.add_argument('--emo',
default=None, type=str, help='emotion', choices=['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'])
parser.add_argument('--no_crop',
action = 'store_true', help = 'not using crop')
parser.add_argument('--res_video_path',
default=None, type=str, help='res video path')
parser.add_argument('--ckpt_path',
default="/home/nvadmin/workspace/taek/float-pytorch/checkpoints/float.pth", type=str, help='checkpoint path')
parser.add_argument('--res_dir',
default="./results", type=str, help='result dir')
return parser
if __name__ == '__main__':
opt = InferenceOptions().parse()
opt.rank, opt.ngpus = 0,1
agent = InferenceAgent(opt)
os.makedirs(opt.res_dir, exist_ok = True)
# -------------- input -------------
ref_path = opt.ref_path
aud_path = opt.aud_path
# ----------------------------------
if opt.res_video_path is None:
video_name = os.path.splitext(os.path.basename(ref_path))[0]
audio_name = os.path.splitext(os.path.basename(aud_path))[0]
call_time = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
res_video_path = os.path.join(opt.res_dir, "%s-%s-%s-nfe%s-seed%s-acfg%s-ecfg%s-%s.mp4" \
% (call_time, video_name, audio_name, opt.nfe, opt.seed, opt.a_cfg_scale, opt.e_cfg_scale, opt.emo))
else:
res_video_path = opt.res_video_path
agent.run_inference(
res_video_path,
ref_path,
aud_path,
a_cfg_scale = opt.a_cfg_scale,
r_cfg_scale = opt.r_cfg_scale,
e_cfg_scale = opt.e_cfg_scale,
emo = opt.emo,
nfe = opt.nfe,
no_crop = opt.no_crop,
seed = opt.seed
)