-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathlr_scheduler.py
86 lines (70 loc) · 2.91 KB
/
lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim import SGD
import torch
import warnings
class PolynomialLRWarmup(_LRScheduler):
def __init__(self, optimizer, warmup_iters, total_iters=5, power=1.0, last_epoch=-1, verbose=False):
super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)
self.total_iters = total_iters
self.power = power
self.warmup_iters = warmup_iters
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", UserWarning)
if self.last_epoch == 0 or self.last_epoch > self.total_iters:
return [group["lr"] for group in self.optimizer.param_groups]
if self.last_epoch <= self.warmup_iters:
return [base_lr * self.last_epoch / self.warmup_iters for base_lr in self.base_lrs]
else:
l = self.last_epoch
w = self.warmup_iters
t = self.total_iters
decay_factor = ((1.0 - (l - w) / (t - w)) / (1.0 - (l - 1 - w) / (t - w))) ** self.power
return [group["lr"] * decay_factor for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
if self.last_epoch <= self.warmup_iters:
return [
base_lr * self.last_epoch / self.warmup_iters for base_lr in self.base_lrs]
else:
return [
(
base_lr * (1.0 - (min(self.total_iters, self.last_epoch) - self.warmup_iters) / (self.total_iters - self.warmup_iters)) ** self.power
)
for base_lr in self.base_lrs
]
if __name__ == "__main__":
class TestModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(32, 32)
def forward(self, x):
return self.linear(x)
test_module = TestModule()
test_module_pfc = TestModule()
lr_pfc_weight = 1 / 3
base_lr = 10
total_steps = 1000
sgd = SGD([
{"params": test_module.parameters(), "lr": base_lr},
{"params": test_module_pfc.parameters(), "lr": base_lr * lr_pfc_weight}
], base_lr)
scheduler = PolynomialLRWarmup(sgd, total_steps//10, total_steps, power=2)
x = []
y = []
y_pfc = []
for i in range(total_steps):
scheduler.step()
lr = scheduler.get_last_lr()[0]
lr_pfc = scheduler.get_last_lr()[1]
x.append(i)
y.append(lr)
y_pfc.append(lr_pfc)
import matplotlib.pyplot as plt
fontsize=15
plt.figure(figsize=(6, 6))
plt.plot(x, y, linestyle='-', linewidth=2, )
plt.plot(x, y_pfc, linestyle='-', linewidth=2, )
plt.xlabel('Iterations') # x_label
plt.ylabel("Lr") # y_label
plt.savefig("tmp.png", dpi=600, bbox_inches='tight')