diff --git a/recognition/arcface_torch/README.md b/recognition/arcface_torch/README.md index e6f92c5ba..ea27365c1 100644 --- a/recognition/arcface_torch/README.md +++ b/recognition/arcface_torch/README.md @@ -164,12 +164,4 @@ More details see booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2022} } -@inproceedings{an2020partical_fc, - title={Partial FC: Training 10 Million Identities on a Single Machine}, - author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and - Zhang, Debing and Fu Ying}, - booktitle={Proceedings of International Conference on Computer Vision Workshop}, - pages={1445-1449}, - year={2020} -} ``` diff --git a/recognition/arcface_torch/partial_fc.py b/recognition/arcface_torch/partial_fc.py index 4e74279bf..93ead8b4a 100644 --- a/recognition/arcface_torch/partial_fc.py +++ b/recognition/arcface_torch/partial_fc.py @@ -8,7 +8,7 @@ class PartialFC(torch.nn.Module): """ - https://arxiv.org/abs/2010.05222 + https://arxiv.org/abs/2203.15565 A distributed sparsely updating variant of the FC layer, named Partial FC (PFC). When sample rate less than 1, in each iteration, positive class centers and a random subset of diff --git a/recognition/partial_fc/README.md b/recognition/partial_fc/README.md index 7dccd701d..f63872c7a 100644 --- a/recognition/partial_fc/README.md +++ b/recognition/partial_fc/README.md @@ -5,7 +5,7 @@ Partial FC is a distributed deep learning training framework for face recognitio ## Contents -[Partial FC](https://arxiv.org/abs/2010.05222) +[Partial FC](https://arxiv.org/abs/2203.15565) - [Largest Face Recognition Dataset: **Glint360k**](#Glint360K) - [Docker](#Docker) - [Performance On Million Identities](#Benchmark) @@ -144,15 +144,15 @@ The torrent has been released. ## Citation If you find Partial-FC or Glint360K useful in your research, please consider to cite the following related paper: -[Partial FC](https://arxiv.org/abs/2010.05222) +[Partial FC](https://arxiv.org/abs/2203.15565) ``` -@inproceedings{an2020partical_fc, - title={Partial FC: Training 10 Million Identities on a Single Machine}, - author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and - Zhang, Debing and Fu Ying}, - booktitle={Arxiv 2010.05222}, - year={2020} +@inproceedings{an2022pfc, + title={Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC}, + author={An, Xiang and Deng, Jiangkang and Guo, Jia and Feng, Ziyong and Zhu, Xuhan and Jing, Yang and Tongliang, Liu}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + year={2022} } + ``` diff --git a/recognition/partial_fc/mxnet/README_CN.md b/recognition/partial_fc/mxnet/README_CN.md index 999a6f8aa..8c63462ea 100644 --- a/recognition/partial_fc/mxnet/README_CN.md +++ b/recognition/partial_fc/mxnet/README_CN.md @@ -1,6 +1,6 @@ ## 目录 ## Contents -[Partial FC](https://arxiv.org/abs/2010.05222) +[Partial FC](https://arxiv.org/abs/2203.15565) - [如何安装](#如何安装) - [如何运行](#如何运行) - [错误排查](#错误排查) diff --git a/recognition/partial_fc/mxnet/memory_module.py b/recognition/partial_fc/mxnet/memory_module.py index 5b85c24c0..acd0b6b9e 100644 --- a/recognition/partial_fc/mxnet/memory_module.py +++ b/recognition/partial_fc/mxnet/memory_module.py @@ -19,7 +19,7 @@ class SampleDistributeModule(object): RTX2080Ti can complete classification tasks with 100 million of identities. See the original paper: - https://arxiv.org/abs/2010.05222 + https://arxiv.org/abs/2203.15565 Parameters ---------- diff --git a/recognition/partial_fc/mxnet/train_memory.py b/recognition/partial_fc/mxnet/train_memory.py index d665e3426..7a4eb7f59 100644 --- a/recognition/partial_fc/mxnet/train_memory.py +++ b/recognition/partial_fc/mxnet/train_memory.py @@ -1,10 +1,3 @@ -""" -Author: {Xiang An, XuHan Zhu, Yang Xiao} in DeepGlint, -Partial FC: Training 10 Million Identities on a Single Machine -See the original paper: -https://arxiv.org/abs/2010.05222 -""" - import argparse import logging import os