-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ADWIN_scale_problem.py
33 lines (26 loc) · 1.62 KB
/
run_ADWIN_scale_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import subprocess
import os
from components.adaptive.detectors import SelectDetector, ConceptDriftDetector
from components.dfg_definitions import Metric
from components.ippd_fw import IPDDParametersAdaptiveControlflow
from components.parameters import Approach, ReadLogAs, AdaptivePerspective, ControlflowAdaptiveApproach
from ipdd_cli import run_IPDD_script
def trace_by_trace_without_update_model():
input_path = 'C:/Users/Denise/OneDrive/Documents/Doutorado/Bases de Dados/DadosConceptDrift/IPDD_Datasets/dataset1'
log = 'cb5k.xes'
log_filename = os.path.join(input_path, log)
window = 100
detector_class = SelectDetector.get_detector_instance(ConceptDriftDetector.ADWIN.name)
parameters = IPDDParametersAdaptiveControlflow(logname=log_filename,
approach=Approach.ADAPTIVE.name,
perspective=AdaptivePerspective.CONTROL_FLOW.name,
read_log_as=ReadLogAs.TRACE.name,
win_size=window,
metrics=[Metric.NODES.name, Metric.EDGES.name],
adaptive_controlflow_approach=ControlflowAdaptiveApproach.TRACE.name,
detector_class=detector_class,
update_model=False)
detected_drifts = run_IPDD_script(parameters)
print(f'IPDD detected: {detected_drifts}')
if __name__ == '__main__':
trace_by_trace_without_update_model()