-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_UTFPR_analysis.py
97 lines (82 loc) · 3.57 KB
/
run_UTFPR_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
This file is part of Interactive Process Drift (IPDD) Framework.
IPDD is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
IPDD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with IPDD. If not, see <https://www.gnu.org/licenses/>.
"""
import os
import subprocess
from components.dfg_definitions import Metric
from ipdd_massive import run_massive_fixed_controlflow, run_massive_adaptive_controlflow_trace_by_trace, \
calculate_metrics_massive, run_massive_adaptive_controlflow_windowing, run_massive_adaptive_data
def define_change_points_dataset1(inter_drift_distance):
actual_change_points = []
for i in range(inter_drift_distance, inter_drift_distance * 10, inter_drift_distance):
actual_change_points.append(i)
return actual_change_points
class UTFPRConfigurationControlflow:
###############################################################
# Information about the data for performing the experiments
###############################################################
input_path = 'C:/Users/denis/Documents/ProjetoUTFPR'
lognames = [
# 'log_formados.gz.xes.gz',
# 'log_desistentes.gz.xes.gz',
'CP.Sheet1.xes.gz'
]
windows = [20]
deltas = [0.002]
class UTFPRConfigurationData:
###############################################################
# Information about the data for performing the experiments
###############################################################
input_path = 'C:/Users/Denise/OneDrive/Documents/Doutorado/ProjetoUTFPR'
lognames = [
# 'CP_numericos.xes.gz',
# 'CP_Original.xes.gz'
'CP_Original_Obrigatorias_SemDesistentes_SemCursando.xes.gz'
]
deltas = [0.002]
attribute_names = [
# 'Cursando',
# 'Desistente',
# 'Formado',
# 'Aprovado',
# 'Cancelado',
# 'Crédito Consignado',
# 'Reprovado',
# 'Sem conclusão'
'Média',
# 'Freq. (4)'
]
# activities = ['Análise De Circuitos Elétricos 1']
ordered_by_event = True
def one_experiment_for_testing():
folder = 'C:/Users/Denise/OneDrive/Documents/Doutorado/Bases de Dados/ProjetoUTFPR'
lognames = [
'log_formados.gz.xes.gz',
# 'log_desistentes.gz.xes.gz',
]
deltas = [0.002]
attribute = 'Média'
for log in lognames:
file = os.path.join(folder, log)
for delta in deltas:
print(
f'Executando experimento para o log {file} adaptativo OTHER ATTRIBUTE {attribute} com delta {delta} ...')
subprocess.run(f"ipdd_cli.py -a a -l {file} -d {delta} -p td -at ot -atname {attribute}", shell=True)
if __name__ == '__main__':
#datasetconfig_controlflow = UTFPRConfigurationControlflow()
# run_massive_adaptive_controlflow_trace_by_trace(datasetconfig_controlflow,
# metrics=[Metric.NODES],
# save_sublogs=True,
# save_model_svg=True)
datasetconfig_data = UTFPRConfigurationData()
run_massive_adaptive_data(datasetconfig_data)