-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbulkthumbs_12.py
805 lines (691 loc) · 33.4 KB
/
bulkthumbs_12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
#!/usr/bin/env python
"""
author: Landon Gelman, 2018
description: command line tools for making large numbers and multiple kinds of cutouts from the Dark Energy Survey catalogs
"""
import os, sys
import argparse
import datetime
import logging
import glob
import time
import shlex
import subprocess
import easyaccess as ea
import numpy as np
import pandas as pd
import PIL
import uuid
import json
import yaml
from astropy import units as u
from astropy.io import fits
from astropy.nddata import Cutout2D
from astropy.nddata import NoOverlapError
from astropy.nddata import utils as ndu
from astropy.coordinates import SkyCoord
from astropy.wcs import WCS
from astropy.wcs import utils
from astropy.visualization import make_lupton_rgb as mlrgb
from mpi4py import MPI as mpi
from PIL import Image
Image.MAX_IMAGE_PIXELS = 144000000 # allows Pillow to not freak out at a large filesize
ARCMIN_TO_DEG = 0.0166667 # deg per arcmin
TILES_FOLDER = ''
OUTDIR = ''
DR1_UU = ''
DR1_PP = ''
comm = mpi.COMM_WORLD
nprocs = comm.Get_size()
rank = comm.Get_rank()
class MPILogHandler(logging.FileHandler):
def __init__(self, filename, comm, amode=mpi.MODE_WRONLY|mpi.MODE_CREATE|mpi.MODE_APPEND):
self.comm = comm
self.filename = filename
self.amode = amode
self.encoding = 'utf-8'
logging.StreamHandler.__init__(self, self._open())
def _open(self):
stream = mpi.File.Open(self.comm, self.filename, self.amode)
stream.Set_atomicity(True)
return stream
def emit(self, record):
try:
msg = self.format(record)
stream = self.stream
stream.Write_shared((msg+self.terminator).encode(self.encoding))
except Exception:
self.handleError(record)
def close(self):
if self.stream:
self.stream.Sync()
self.stream.Close()
self.stream = None
def getPathSize(path):
dirsize = 0
for entry in os.scandir(path):
if entry.is_dir(follow_symlinks=False):
dirsize += getPathSize(entry.path)
else:
try:
dirsize += os.path.getsize(entry)
except FileNotFoundError:
continue
return dirsize
def _DecConverter(ra, dec):
ra1 = np.abs(ra/15)
raHH = int(ra1)
raMM = int((ra1 - raHH) * 60)
raSS = (((ra1 - raHH) * 60) - raMM) * 60
raSS = np.round(raSS, decimals=4)
raOUT = '{0:02d}{1:02d}{2:07.4f}'.format(raHH, raMM, raSS) if ra > 0 else '-{0:02d}{1:02d}{2:07.4f}'.format(raHH, raMM, raSS)
dec1 = np.abs(dec)
decDD = int(dec1)
decMM = int((dec1 - decDD) * 60)
decSS = (((dec1 - decDD) * 60) - decMM) * 60
decSS = np.round(decSS, decimals=4)
decOUT = '-{0:02d}{1:02d}{2:07.4f}'.format(decDD, decMM, decSS) if dec < 0 else '+{0:02d}{1:02d}{2:07.4f}'.format(decDD, decMM, decSS)
return raOUT + decOUT
def MakeRGB(df, p, xs, ys, r, g, b, w, bp, s, q):
pixelscale = utils.proj_plane_pixel_scales(w)
dx = int(0.5 * xs * ARCMIN_TO_DEG / pixelscale[0]) # pixelscale is in degrees (CUNIT)
dy = int(0.5 * ys * ARCMIN_TO_DEG / pixelscale[1])
image = mlrgb(r, g, b, minimum=bp, stretch=s, Q=q)
image = Image.fromarray(image, mode='RGB')
image = image.transpose(PIL.Image.FLIP_TOP_BOTTOM)
if 'XSIZE' in df and not np.isnan(df['XSIZE'][p]):
udx = int(0.5 * df['XSIZE'][p] * ARCMIN_TO_DEG / pixelscale[0])
else:
udx = dx
if 'YSIZE' in df and not np.isnan(df['YSIZE'][p]):
udy = int(0.5 * df['YSIZE'][p] * ARCMIN_TO_DEG / pixelscale[0])
else:
udy = dy
if image.size != (2*udx, 2*udy):
issmaller = True
else:
issmaller = False
return image, issmaller
def MakeLuptonRGB(tiledir, outdir, df, positions, xs, ys, colors, bp, s, q):
logger = logging.getLogger(__name__)
for i in colors:
c = i.split(',')
if not os.path.exists(outdir): # Nothing has been created. No color bands exist.
# Call to MakeFitsCut with all colors
size = u.Quantity((ys, xs), u.arcmin)
MakeFitsCut(tiledir, outdir, size, positions, c, df)
else: # Outdir exists, now check if the right color bands exist.
print('outdir exists')
c2 = []
if not glob.glob(outdir+'*_{}.fits'.format(c[0])): # Color band doesn't exist
c2.append(c[0]) # append color to list to make
if not glob.glob(outdir+'*_{}.fits'.format(c[1])): # Color band doesn't exist
c2.append(c[1]) # append color to list to make
if not glob.glob(outdir+'*_{}.fits'.format(c[2])): # Color band doesn't exist
c2.append(c[2]) # append color to list to make
if c2: # Call to MakeFitsCut with necessary colors
logger.info('MakeLuptonRGB - Some required color band fits files are missing so we will call MakeFitsCut.')
size = u.Quantity((ys, xs), u.arcmin)
MakeFitsCut(tiledir, outdir, size, positions, c, df)
for p in range(len(positions)):
if 'COADD_OBJECT_ID' in df:
nm = df['COADD_OBJECT_ID'][p]
filenm = outdir + '{0}_{1}{2}{3}.png'.format(nm, c[0], c[1], c[2])
else:
nm = 'DESJ' + _DecConverter(df['RA'][p], df['DEC'][p])
filenm = outdir + '{0}_{1}{2}{3}.png'.format(nm, c[0], c[1], c[2])
try:
file_r = glob.glob(outdir+'{0}_{1}.fits'.format(nm, c[0]))
except IndexError:
print('No FITS file in {0} band found for object {1}. Will not creat RGB cutout.'.format(c[0], nm))
logger.error('MakeLuptonRGB - No FITS file in {0} band found for {1}. Will not creat RGB cutout.'.format(c[0], nm))
continue
else:
r, header = fits.getdata(file_r[0], 'SCI', header=True)
w = WCS(header)
try:
file_g = glob.glob(outdir+'{0}_{1}.fits'.format(nm, c[1]))
except IndexError:
print('No FITS file in {0} band found for object {1}. Will not creat RGB cutout.'.format(c[1], nm))
logger.error('MakeLuptonRGB - No FITS file in {0} band found for {1}. Will not creat RGB cutout.'.format(c[1], nm))
continue
else:
g = fits.getdata(file_g[0], 'SCI')
try:
file_b = glob.glob(outdir+'{0}_{1}.fits'.format(nm, c[2]))
except IndexError:
print('No FITS file in {0} band found for object {1}. Will not creat RGB cutout.'.format(c[2], nm))
logger.error('MakeLuptonRGB - No FITS file in {0} band found for {1}. Will not creat RGB cutout.'.format(c[2], nm))
continue
else:
b = fits.getdata(file_b[0], 'SCI')
newimg, issmaller = MakeRGB(df, positions[p], xs, ys, r, g, b, w, bp, s, q)
newimg.save(filenm, format='PNG')
if issmaller:
logger.info('MakeLuptonRGB - {} is smaller than user requested. This is likely because the object/coordinate was in close proximity to the edge of a tile.'.format(('/').join(filenm.split('/')[-2:])))
logger.info('MakeLuptonRGB - Tile {} complete.'.format(df['TILENAME'][0]))
def MakeTiffCut(tiledir, outdir, positions, xs, ys, df, maketiff, makepngs):
logger = logging.getLogger(__name__)
os.makedirs(outdir, exist_ok=True)
imgname = glob.glob(tiledir + '*.tiff')
try:
im = Image.open(imgname[0])
except IndexError as e:
print('No TIFF file found for tile ' + df['TILENAME'][0] + '. Will not create true-color cutout.')
logger.error('MakeTiffCut - No TIFF file found for tile ' + df['TILENAME'][0] + '. Will not create true-color cutout.')
return
# try opening I band FITS (fallback on G, R bands)
hdul = None
for _i in ['i','g','r','z','Y']:
tilename = glob.glob(tiledir+'*_{}.fits.fz'.format(_i))
try:
hdul = fits.open(tilename[0])
except IOError as e:
hdul = None
logger.warning('MakeTiffCut - Could not find master FITS file: ' + tilename)
continue
else:
break
if not hdul:
print('Cannot find a master fits file for this tile.')
logger.error('MakeTiffCut - Cannot find a master fits file for this tile.')
return
w = WCS(hdul['SCI'].header)
pixelscale = utils.proj_plane_pixel_scales(w)
dx = int(0.5 * xs * ARCMIN_TO_DEG / pixelscale[0]) # pixelscale is in degrees (CUNIT)
dy = int(0.5 * ys * ARCMIN_TO_DEG / pixelscale[1])
pixcoords = utils.skycoord_to_pixel(positions, w, origin=0, mode='wcs')
for i in range(len(positions)):
if 'COADD_OBJECT_ID' in df:
filenm = outdir + str(df['COADD_OBJECT_ID'][i])
else:
#filenm = outdir + 'x{0}y{1}'.format(df['RA'][i], df['DEC'][i])
filenm = outdir + 'DESJ' + _DecConverter(df['RA'][i], df['DEC'][i])
if 'XSIZE' in df and not np.isnan(df['XSIZE'][i]):
udx = int(0.5 * df['XSIZE'][i] * ARCMIN_TO_DEG / pixelscale[0])
else:
udx = dx
if 'YSIZE' in df and not np.isnan(df['YSIZE'][i]):
udy = int(0.5 * df['YSIZE'][i] * ARCMIN_TO_DEG / pixelscale[0])
else:
udy = dy
left = max(0, pixcoords[0][i] - udx)
upper = max(0, im.size[1] - pixcoords[1][i] - udy)
right = min(pixcoords[0][i] + udx, 10000)
lower = min(im.size[1] - pixcoords[1][i] + udy, 10000)
newimg = im.crop((left, upper, right, lower))
if maketiff:
filenm += '.tiff'
newimg.save(filenm, format='TIFF')
if makepngs:
filenm += '.png'
newimg.save(filenm, format='PNG')
if newimg.size != (2*udx, 2*udy):
logger.info('MakeTiffCut - {} is smaller than user requested. This is likely because the object/coordinate was in close proximity to the edge of a tile.'.format(('/').join(filenm.split('/')[-2:])))
logger.info('MakeTiffCut - Tile {} complete.'.format(df['TILENAME'][0]))
def MakeFitsCut(tiledir, outdir, size, positions, colors, df):
logger = logging.getLogger(__name__)
os.makedirs(outdir, exist_ok=True) # Check if outdir exists
for c in range(len(colors)): # Iterate over all desired colors
# Finish the tile's name and open the file. Camel-case check is required because Y band is always capitalized.
if colors[c] == 'Y':
tilename = glob.glob(tiledir + '*_{}.fits.fz'.format(colors[c]))
else:
tilename = glob.glob(tiledir + '*_{}.fits.fz'.format(colors[c].lower()))
try:
hdul = fits.open(tilename[0])
except IndexError as e:
print('No FITS file in {0} color band found. Will not create cutouts in this band.'.format(colors[c]))
logger.error('MakeFitsCut - No FITS file in {0} color band found. Will not create cutouts in this band.'.format(colors[c]))
continue # Just go on to the next color in the list
for p in range(len(positions)): # Iterate over all inputted coordinates
if 'COADD_OBJECT_ID' in df:
filenm = outdir + '{0}_{1}.fits'.format(df['COADD_OBJECT_ID'][p], colors[c].lower())
else:
#filenm = outdir + 'x{0}y{1}_{2}.fits'.format(df['RA'][p], df['DEC'][p], colors[c].lower())
filenm = outdir + 'DESJ' + _DecConverter(df['RA'][p], df['DEC'][p]) + '_{}.fits'.format(colors[c].lower())
newhdul = fits.HDUList()
pixelscale = None
if 'XSIZE' in df or 'YSIZE' in df:
if 'XSIZE' in df and not np.isnan(df['XSIZE'][p]):
uxsize = df['XSIZE'][p] * u.arcmin
else:
uxsize = size[1]
if 'YSIZE' in df and not np.isnan(df['YSIZE'][p]):
uysize = df['YSIZE'][p] * u.arcmin
else:
uysize = size[0]
usize = u.Quantity((uysize, uxsize))
else:
usize = size
# Iterate over all HDUs in the tile
for i in range(len(hdul)):
if hdul[i].name == 'PRIMARY':
continue
h = hdul[i].header
data = hdul[i].data
header = h.copy()
w=WCS(header)
cutout = Cutout2D(data, positions[p], usize, wcs=w, mode='trim')
crpix1, crpix2 = cutout.position_cutout
x, y = cutout.position_original
crval1, crval2 = w.wcs_pix2world(x, y, 1)
header['CRPIX1'] = crpix1
header['CRPIX2'] = crpix2
header['CRVAL1'] = float(crval1)
header['CRVAL2'] = float(crval2)
header['HIERARCH RA_CUTOUT'] = df['RA'][p]
header['HIERARCH DEC_CUTOUT'] = df['DEC'][p]
if not newhdul:
newhdu = fits.PrimaryHDU(data=cutout.data, header=header)
pixelscale = utils.proj_plane_pixel_scales(w)
else:
newhdu = fits.ImageHDU(data=cutout.data, header=header, name=h['EXTNAME'])
newhdul.append(newhdu)
if pixelscale is not None:
dx = int(usize[1] * ARCMIN_TO_DEG / pixelscale[0] / u.arcmin) # pixelscale is in degrees (CUNIT)
dy = int(usize[0] * ARCMIN_TO_DEG / pixelscale[1] / u.arcmin)
if (newhdul[0].header['NAXIS1'], newhdul[0].header['NAXIS2']) != (dx, dy):
logger.info('MakeFitsCut - {} is smaller than user requested. This is likely because the object/coordinate was in close proximity to the edge of a tile.'.format(('/').join(filenm.split('/')[-2:])))
newhdul.writeto(filenm, output_verify='exception', overwrite=True, checksum=False)
newhdul.close()
logger.info('MakeFitsCut - Tile {} complete.'.format(df['TILENAME'][0]))
def MakeStiffRGB(par):
'''
Method to create a color image by using STIFF and a combination of 3 bands.
The final products will be PNGs, removing TIF images
Works on a tile-basis
Parameters
----------
tiledir: str
Path to tile directory
outdir: str
Path to output files
size: astropy Quantity
Box size in arcmin
positions: astropy SkyCoord
Positions in the tile, in celestial coordinates
tiff_bands: list of list of str
Set of bands for combine [['Y,r,g'], ['z,r,g'], ['i,r,g']]
df: dataframe
Pandas dtaframe of stamp centers and tilename, for the tile we are
working in
Returns
-------
list with saved PNGs
'''
# Uncompress parameters
tiledir, outdir, size, positions, tiff_bands, df = par
# Check if outdir exists
logger = logging.getLogger(__name__)
os.makedirs(outdir, exist_ok=True)
# MakeFitsCut already iterates over the tile-dataframe. Take advantage of it
# Call FITS cut will return groups of band and positions:
# [(g1,g2), (r1,r2), (z1,z2)]
for band_set in tiff_bands:
print('Calling with band set: {0}'.format(band_set))
MakeFitsCut(tiledir, outdir, size, positions, band_set.split(','), df)
# Using the same order in the dataframe, create the output name for the
# RGB combined TIF
# Iterate over bands, same as LuptonRGB
fits_fnm_tile = []
for bset in tiff_bands:
blist = bset.split(',')
# Check 3 needed band for combination
if (len(blist) != 3):
print('3 bands are needed for STIFF RGB image combine.')
sys.exit(1)
# Iterate over each requested position
for idx, row in df.iterrows():
tmp_fits_fnm = [] = []
# Get FITS names
for b in blist:
if 'COADD_OBJECT_ID' in row:
fits_filenm = outdir + '{0}_{1}.fits'.format(
row['COADD_OBJECT_ID'], b.lower()
)
tmp_fits_fnm.append(fits_filenm)
else:
fits_filenm = outdir + 'DESJ'
fits_filenm += _DecConverter(row['RA'], row['DEC'])
fits_filenm += '_{0}.fits'.format(b.lower())
tmp_fits_fnm.append(fits_filenm)
# Checkpoint
if (len(tmp_fits_fnm) != 3):
print('3 FITS images are needed for STIFF to combine.')
sys.exit(1)
# Call STIFF using the 3 bands. Need to inver the order, from
# bluest to reddest
if (tmp_fits_fnm[0].rfind('_') > -1):
outnm = tmp_fits_fnm[0][:tmp_fits_fnm[0].rfind('_')]
outnm += '.tif'
else:
print('Error in naming of the TIF tmp image')
outnm = outnm.replace('fits', 'tif')
tmp_fits_fnm = tmp_fits_fnm[::-1]
cmd_stiff = 'stiff {0}'.format(' '.join(tmp_fits_fnm))
cmd_stiff += ' -OUTFILE_NAME {0}'.format(outnm)
cmd_stiff = shlex.split(cmd_stiff)
try:
subprocess.call(cmd_stiff)
print('Written: {0}'.format(outnm))
except OSError as e:
logging.error(e)
raise
# Convert TIF to PNG. Then remove TIF
outnm_png = outnm.replace(
'.tif',
'_{0}.png'.format(''.join(list(blist)))
)
cmd_convert = 'convert {0} {1}'.format(outnm, outnm_png)
cmd_convert = shlex.split(cmd_convert)
try:
subprocess.call(cmd_convert)
print('Written: {0}'.format(outnm_png))
except OSError as e:
logging.error(e)
raise
try:
os.remove(outnm)
except OSError as e:
logging.error(e)
raise
t_i = 'MakeStiffRGB - Tile {0} complete.'.format(df['TILENAME'].unique())
logging.info(t_i)
return True
def run(args):
''' Method to run the cutouts
Parameters
----------
coadd: list of str
colors: str
colors_stiff: list of str
csv: str
db: str
dec: list of floats
jobid: str
make_fits: boolean
make_pngs: boolean
make_rgb_stiff: boolean
make_rgbs: list of str
make_tiffs: boolean
outdir: str
ra: list of floats
return_list: boolean
rgb_asinh: float
rgb_minimum: float
rgb_stretch: float
xsize: float (should be int)
ysize: float (should be int)
'''
if rank == 0:
if args.db == 'DR1':
db = 'desdr'
uu = DR1_UU
pp = DR1_PP
conn = ea.connect(db, user=uu, passwd=pp)
elif args.db == 'Y3A2':
db = 'dessci'
conn = ea.connect(db)
curs = conn.cursor()
usernm = str(conn.user)
if args.jobid:
jobid = args.jobid
else:
jobid = str(uuid.uuid4())
outdir = OUTDIR + usernm + '/' + jobid + '/'
try:
os.makedirs(outdir, exist_ok=False)
except OSError as e:
print(e)
print('Specified jobid already exists in output directory. Aborting job.')
conn.close()
sys.stdout.flush()
comm.Abort()
else:
usernm, jobid, outdir = None, None, None
usernm, jobid, outdir = comm.bcast([usernm, jobid, outdir], root=0)
logtime = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
#logname = OUTDIR + 'BulkThumbs_' + logtime + '.log'
logname = outdir + 'BulkThumbs_' + logtime + '.log'
formatter = logging.Formatter('%(asctime)s - '+str(rank)+' - %(levelname)-8s - %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
fh = MPILogHandler(logname, comm)
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
xs = float(args.xsize)
ys = float(args.ysize)
colors = args.colors.split(',')
if rank == 0:
summary = {}
start = time.time()
logger.info('Selected Options:')
# This puts any input type into a pandas dataframe
if args.csv:
userdf = pd.DataFrame(pd.read_csv(args.csv))
logger.info(' CSV: '+args.csv)
summary['csv'] = args.csv
elif args.ra:
coords = {}
coords['RA'] = args.ra
coords['DEC'] = args.dec
userdf = pd.DataFrame.from_dict(coords, orient='columns')
logger.info(' RA: '+str(args.ra))
logger.info(' DEC: '+str(args.dec))
summary['ra'] = str(args.ra)
summary['dec'] = str(args.dec)
elif args.coadd:
coadds = {}
coadds['COADD_OBJECT_ID'] = args.coadd
userdf = pd.DataFrame.from_dict(coadds, orient='columns')
logger.info(' CoaddID: '+str(args.coadd))
summary['coadd'] = str(args.coadd)
logger.info(' X size: '+str(args.xsize))
logger.info(' Y size: '+str(args.ysize))
logger.info(' Make TIFFs? '+str(args.make_tiffs))
logger.info(' Make PNGs? '+str(args.make_pngs))
logger.info(' Make FITS? '+str(args.make_fits))
logger.info(' Make RGBs? {}'.format('True' if args.make_rgbs else 'False'))
summary['xsize'] = str(args.xsize)
summary['ysize'] = str(args.ysize)
summary['make_tiffs'] = str(args.make_tiffs)
summary['make_pngs'] = str(args.make_pngs)
summary['make_fits'] = str(args.make_fits)
summary['make_rgbs'] = 'True' if args.make_rgbs else 'False'
if args.make_fits:
logger.info(' Bands: '+args.colors)
summary['bands'] = args.colors
if args.make_rgbs:
logger.info(' Bands: '+str(args.make_rgbs))
summary['rgb_colors'] = args.make_rgbs
summary['db'] = args.db
df = pd.DataFrame()
unmatched_coords = {'RA':[], 'DEC':[]}
unmatched_coadds = []
logger.info('User: ' + usernm)
logger.info('JobID: ' + str(jobid))
summary['user'] = usernm
summary['jobid'] = str(jobid)
tablename = 'BTL_'+jobid.upper().replace("-","_") # "BulkThumbs_List_<jobid>"
if 'RA' in userdf:
ra_adjust = [360-userdf['RA'][i] if userdf['RA'][i]>180 else userdf['RA'][i] for i in range(len(userdf['RA']))]
userdf = userdf.assign(RA_ADJUSTED = ra_adjust)
userdf.to_csv(OUTDIR+tablename+'.csv', index=False)
conn.load_table(OUTDIR+tablename+'.csv', name=tablename)
#query = "select temp.RA, temp.DEC, temp.RA_ADJUSTED, temp.RA as ALPHAWIN_J2000, temp.DEC as DELTAWIN_J2000, m.TILENAME from {} temp left outer join Y3A2_COADDTILE_GEOM m on (m.CROSSRA0='N' and (temp.RA between m.URAMIN and m.URAMAX) and (temp.DEC between m.UDECMIN and m.UDECMAX)) or (m.CROSSRA0='Y' and (temp.RA_ADJUSTED between m.URAMIN-360 and m.URAMAX) and (temp.DEC between m.UDECMIN and m.UDECMAX))".format(tablename)
query = "select temp.RA, temp.DEC, temp.RA_ADJUSTED, temp.RA as ALPHAWIN_J2000, temp.DEC as DELTAWIN_J2000, m.TILENAME"
if 'XSIZE' in userdf:
query += ", temp.XSIZE"
if 'YSIZE' in userdf:
query += ", temp.YSIZE"
if args.db == 'Y3A2':
catalog = 'Y3A2_COADDTILE_GEOM'
elif args.db == 'DR1':
catalog = 'DR1_Tile_INFO'
query += " from {0} temp left outer join {1} m on (m.CROSSRA0='N' and (temp.RA between m.URAMIN and m.URAMAX) and (temp.DEC between m.UDECMIN and m.UDECMAX)) or (m.CROSSRA0='Y' and (temp.RA_ADJUSTED between m.URAMIN-360 and m.URAMAX) and (temp.DEC between m.UDECMIN and m.UDECMAX))".format(tablename, catalog)
df = conn.query_to_pandas(query)
curs.execute('drop table {}'.format(tablename))
os.remove(OUTDIR+tablename+'.csv')
df = df.replace('-9999',np.nan)
df = df.replace(-9999.000000,np.nan)
dftemp = df[df.isnull().any(axis=1)]
unmatched_coords['RA'] = dftemp['RA'].tolist()
unmatched_coords['DEC'] = dftemp['DEC'].tolist()
df = df.dropna(axis=0, how='any')
logger.info('Unmatched coordinates: \n{0}\n{1}'.format(unmatched_coords['RA'], unmatched_coords['DEC']))
summary['Unmatched_Coords'] = unmatched_coords
print(unmatched_coords)
if 'COADD_OBJECT_ID' in userdf:
userdf.to_csv(OUTDIR+tablename+'.csv', index=False)
conn.load_table(OUTDIR+tablename+'.csv', name=tablename)
#query = "select temp.COADD_OBJECT_ID, m.ALPHAWIN_J2000, m.DELTAWIN_J2000, m.RA, m.DEC, m.TILENAME from {} temp left outer join Y3A2_COADD_OBJECT_SUMMARY m on temp.COADD_OBJECT_ID=m.COADD_OBJECT_ID".format(tablename)
query = "select temp.COADD_OBJECT_ID, m.ALPHAWIN_J2000, m.DELTAWIN_J2000, m.RA, m.DEC, m.TILENAME"
if 'XSIZE' in userdf:
query += ", temp.XSIZE"
if 'YSIZE' in userdf:
query += ", temp.YSIZE"
if args.db == 'Y3A2':
catalog = 'Y3A2_COADD_OBJECT_SUMMARY'
elif args.db == 'DR1':
catalog = 'DR1_MAIN'
query += " from {0} temp left outer join {1} m on temp.COADD_OBJECT_ID=m.COADD_OBJECT_ID".format(tablename, catalog)
df = conn.query_to_pandas(query)
curs.execute('drop table {}'.format(tablename))
os.remove(OUTDIR+tablename+'.csv')
df = df.replace('-9999',np.nan)
df = df.replace(-9999.000000,np.nan)
dftemp = df[df.isnull().any(axis=1)]
unmatched_coadds = dftemp['COADD_OBJECT_ID'].tolist()
df = df.dropna(axis=0, how='any')
logger.info('Unmatched coadd ID\'s: \n{}'.format(unmatched_coadds))
summary['Unmatched_Coadds'] = unmatched_coadds
print(unmatched_coadds)
conn.close()
df = df.sort_values(by=['TILENAME'])
df = df.drop_duplicates(['RA','DEC'], keep='first')
if args.return_list:
os.makedirs(outdir, exist_ok=True)
df.to_csv(outdir+tablename+'.csv', index=False)
df = np.array_split(df, nprocs)
end1 = time.time()
query_elapsed = '{0:.2f}'.format(end1-start)
print('Querying took (s): ' + query_elapsed)
logger.info('Querying took (s): ' + query_elapsed)
summary['query_time'] = query_elapsed
else:
df = None
df = comm.scatter(df, root=0)
tilenm = df['TILENAME'].unique()
for i in tilenm:
tiledir = TILES_FOLDER + i + '/'
udf = df[ df.TILENAME == i ]
udf = udf.reset_index()
#
# Note: DECam uses FK5, but not sure which system SWARP uses.
#
size = u.Quantity((ys, xs), u.arcmin)
positions = SkyCoord(udf['ALPHAWIN_J2000'], udf['DELTAWIN_J2000'], frame='icrs', unit='deg', equinox='J2000', representation_type='spherical')
if args.make_tiffs or args.make_pngs:
MakeTiffCut(tiledir, outdir+i+'/', positions, xs, ys, udf, args.make_tiffs, args.make_pngs)
if args.make_fits:
MakeFitsCut(tiledir, outdir+i+'/', size, positions, colors, udf)
if args.make_rgbs:
MakeLuptonRGB(tiledir, outdir+i+'/', udf, positions, xs, ys, args.make_rgbs, args.rgb_minimum, args.rgb_stretch, args.rgb_asinh)
if args.make_rgb_stiff:
# Working by tilename
var = [tiledir, outdir+i+'/', size, positions, args.colors_stiff, udf]
MakeStiffRGB(var)
comm.Barrier()
if rank == 0:
end2 = time.time()
processing_time = '{0:.2f}'.format(end2-end1)
print('Processing took (s): ' + processing_time)
logger.info('Processing took (s): ' + processing_time)
summary['processing_time'] = processing_time
dirsize = getPathSize(outdir)
dirsize = dirsize * 1. / 1024
if dirsize > 1024. * 1024:
dirsize = '{0:.2f} GB'.format(1. * dirsize / 1024. / 1024)
elif dirsize > 1024.:
dirsize = '{0:.2f} MB'.format(1. * dirsize / 1024.)
else:
dirsize = '{0:.2f} KB'.format(dirsize)
logger.info('All processes finished.')
logger.info('Total file size on disk: {}'.format(dirsize))
summary['size_on_disk'] = str(dirsize)
files = glob.glob(outdir + '*/*')
logger.info('Total number of files: {}'.format(len(files)))
summary['number_of_files'] = len(files)
files = [i.split('/')[-2:] for i in files]
files = [('/').join(i) for i in files]
if 'COADD_OBJECT_ID' in userdf:
files = [i.split('.')[-2] for i in files]
else:
files = [('.').join(i.split('.')[-4:-1]) for i in files]
files = [i.split('_')[0] for i in files]
files = list(set(files))
summary['files'] = files
jsonfile = outdir + 'BulkThumbs_'+logtime+'_SUMMARY.json'
with open(jsonfile, 'w') as fp:
json.dump(summary, fp)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="This program will make any number of cutouts, using the master tiles.")
#
# Note: Seems that for CSV the TILENAME column is also needed
parser.add_argument('--csv', type=str, required=False, help='A CSV with columns \'COADD_OBJECT_ID \' or \'RA,DEC\'')
parser.add_argument('--ra', nargs='*', required=False, type=float, help='RA (decimal degrees)')
parser.add_argument('--dec', nargs='*', required=False, type=float, help='DEC (decimal degrees)')
parser.add_argument('--coadd', nargs='*', required=False, help='Coadd ID for exact object matching.')
parser.add_argument('--make_tiffs', action='store_true', help='Creates a TIFF file of the cutout region.')
parser.add_argument('--make_fits', action='store_true', help='Creates FITS files in the desired bands of the cutout region.')
parser.add_argument('--make_pngs', action='store_true', help='Creates a PNG file of the cutout region.')
parser.add_argument('--make_rgbs', action='append', type=str.lower, help='Creates 3-color images using the bands you select (reddest to bluest), e.g.: --make_rgbs i,r,g --make_rgbs z,i,r --make_rgbs z,r,g')
# Note: MAKE_RGBS should be boolean and use COLORS from the bands, but
# modification of other codes would be necessary.
parser.add_argument('--make_rgb_stiff', action='store_true', help='Create a TIFF image from the combination of 3 bands. Input desired bands, from reddest to bluest in \'--colors_stiff\' argument')
parser.add_argument('--return_list', action='store_true', help='Saves list of inputted objects and their matched tiles to user directory.')
parser.add_argument('--xsize', default=1.0, help='Size in arcminutes of the cutout x-axis. Default: 1.0')
parser.add_argument('--ysize', default=1.0, help='Size in arcminutes of the cutout y-axis. Default: 1.0')
parser.add_argument('--colors', default='I', type=str.upper, help='Color bands for the fits cutout. Default: i')
# nargas=3 works with spaces as separator
# aux_tiff_b = ['z', 'r', 'g']
parser.add_argument('--colors_stiff', action='append', metavar='R,G,B', help='Bands from which to combine the TIFF image, e.g.: z,r,g')
parser.add_argument('--rgb_minimum', default=1.0, help='The black point for the 3-color image. Default 1.0')
parser.add_argument('--rgb_stretch', default=50.0, help='The linear stretch of the image. Default 50.0.')
parser.add_argument('--rgb_asinh', default=10.0, help='The asinh softening parameter. Default 10.0')
parser.add_argument('--db', default='Y3A2', type=str.upper, required=False, help='Which database to use. Default: Y3A2, Options: DR1, Y3A2.')
parser.add_argument('--jobid', required=False, help='Option to manually specify a jobid for this job.')
#parser.add_argument('--usernm', required=False, help='Username for database; otherwise uses values from desservices file.')
#parser.add_argument('--passwd', required=False, help='Password for database; otherwise uses values from desservices file.')
parser.add_argument('--outdir', required=False, help='Overwrite for output directory.')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
with open('config/bulkthumbsconfig.yaml','r') as cfile:
conf = yaml.load(cfile)
TILES_FOLDER = conf['directories']['tiles'] + '/'
if args.outdir:
OUTDIR = args.outdir
else:
OUTDIR = conf['directories']['outdir'] + '/'
DR1_UU = conf['dr1_user']['usernm']
DR1_PP = conf['dr1_user']['passwd']
if not args.csv and not (args.ra and args.dec) and not args.coadd:
print('Please include either RA/DEC coordinates or Coadd IDs.')
sys.exit(1)
if (args.ra and args.dec) and len(args.ra) != len(args.dec):
print('Remember to have the same number of RA and DEC values when using coordinates.')
sys.exit(1)
if (args.ra and not args.dec) or (args.dec and not args.ra):
print('Please include BOTH RA and DEC if not using Coadd IDs.')
sys.exit(1)
if not args.make_tiffs and not args.make_pngs and not args.make_fits and not args.make_rgbs and not args.make_rgb_stiff and not args.return_list:
print('Nothing to do. Please select either/both make_tiff and make_fits.')
sys.exit(1)
if ((args.make_rgb_stiff) and (args.colors_stiff is None)):
print('Please include --colors_stiff when calling --make_rgb_stiff creation.')
sys.exit(1)
run(args)