15
15
debugging = False
16
16
17
17
#______LOAD DATA AND SIM, AND APPLY CUTS
18
- data_ori = pd .read_csv ('../../../data_and_sim/DESALL_fitted_myself /FITOPT000.FITRES' ,
18
+ data_ori = pd .read_csv ('../../../data_and_sim/SMP_SPEC_v1 /FITOPT000.FITRES' ,
19
19
index_col = False , comment = '#' ,delimiter = ' ' )
20
+ # print data_ori
21
+
20
22
tmp = data_ori [(data_ori ['c' ] > - 0.3 ) & (data_ori ['c' ] < 0.3 ) & (data_ori ['x1' ] > - 3 ) & (data_ori ['x1' ]
21
23
< 3 ) & (data_ori ['z' ] > 0.05 ) & (data_ori ['z' ] < 0.9 ) & (data_ori ['FITPROB' ] > 1E-05 )]
22
24
tmp2 = tmp [tmp .columns .values [:- 1 ]]
23
25
#Selecting type Ias!
24
- data = tmp2 [tmp2 ['TYPE' ]== 1 ]
26
+ # data=tmp2[tmp2['TYPE']==1]
27
+ #with SMP we don't have this issue
28
+ data = tmp2
25
29
26
- sim = pd .read_csv ('../sim/NEFF/ FITOPT000.FITRES' ,
30
+ sim = pd .read_csv ('FITOPT000.FITRES' ,
27
31
index_col = False , comment = '#' , delimiter = ' ' )
28
32
tmp2 = sim [(sim ['c' ] > - 0.3 ) & (sim ['c' ] < 0.3 ) & (sim ['x1' ] > - 3 ) & (sim ['x1' ] < 3 )
29
33
& (sim ['z' ] > 0.05 ) & (sim ['z' ] < 0.9 ) & (sim ['FITPROB' ] > 1E-05 )]
@@ -59,12 +63,12 @@ def initial_plots(norm_bin):
59
63
err_sim = []
60
64
for ibin in range (nbins - 1 ):
61
65
# data
62
- bin_elements_dat = np .take (data [var ],np .where (
66
+ bin_elements_dat = np .take (data [var ]. values ,np .where (
63
67
index_of_bin_belonging_to_dat == ibin )[0 ])
64
68
error_dat = np .sqrt (len (bin_elements_dat ))
65
69
err_dat .append (error_dat )
66
70
# sim
67
- bin_elements_sim = np .take (sim [var ],np .where (index_of_bin_belonging_to_sim == ibin )[0 ])
71
+ bin_elements_sim = np .take (sim [var ]. values ,np .where (index_of_bin_belonging_to_sim == ibin )[0 ])
68
72
error_sim = np .sqrt (len (bin_elements_sim ))
69
73
err_sim .append (error_sim )
70
74
del bin_elements_sim , bin_elements_dat
@@ -149,15 +153,16 @@ def plots_vs_z():
149
153
z_bins_plot = np .arange (min_z + half_z_bin_step ,max_z - half_z_bin_step ,z_bin_step )
150
154
color_dic = {'data' :'red' ,'sim' :'blue' }
151
155
152
- Mb_arr = np .ones (len (z_bins )- 1 )* (19.4 )
156
+ Mb = 19.05
157
+ Mb_arr = np .ones (len (z_bins )- 1 )* (Mb )
153
158
alpha = 0.144 #from sim
154
159
beta = 3.1
155
160
156
161
#Bias correction
157
162
mean_mu_arr = []
158
163
mean_z_arr = []
159
164
err_mu_arr = []
160
- sim ['new_mu' ]= np .array (sim ['mB' ])+ 19.38 + np .array (alpha * sim ['x1' ])- np .array (beta * sim ['c' ])- np .array (dist_mu (sim ['z' ]))
165
+ sim ['new_mu' ]= np .array (sim ['mB' ])+ Mb + np .array (alpha * sim ['x1' ])- np .array (beta * sim ['c' ])- np .array (dist_mu (sim ['z' ]))
161
166
for i , z_bin in enumerate (z_bins [:- 1 ]):
162
167
binned_indices = sim [(sim ['z' ] >= z_bin ) & (sim ['z' ] < z_bins [i + 1 ])].index .tolist ()
163
168
binned_mu = sim ['new_mu' ][binned_indices ]
@@ -170,7 +175,7 @@ def plots_vs_z():
170
175
plt .errorbar (mean_z_arr ,mean_mu_arr ,yerr = np .array (err_mu_arr ),fmt = 'o' )
171
176
plt .xlabel ('z' )
172
177
plt .ylabel ('bias correction' )
173
- plt .title ('mB+19.38 +alpha*x1-beta*c-dist_mu(z)' )
178
+ plt .title ('mB+%s +alpha*x1-beta*c-dist_mu(z)' % Mb )
174
179
plt .savefig ('%s/bias.png' % path_to_save )
175
180
del fig
176
181
0 commit comments