2
2
3
3
from .common import Benchmark
4
4
5
- import numpy
5
+ import numpy as np
6
6
7
7
8
8
class Core (Benchmark ):
9
9
def setup (self ):
10
10
self .l100 = range (100 )
11
11
self .l50 = range (50 )
12
- self .l = [numpy .arange (1000 ), numpy .arange (1000 )]
13
- self .l10x10 = numpy .ones ((10 , 10 ))
12
+ self .l = [np .arange (1000 ), np .arange (1000 )]
13
+ self .l10x10 = np .ones ((10 , 10 ))
14
14
15
15
def time_array_1 (self ):
16
- numpy .array (1 )
16
+ np .array (1 )
17
17
18
18
def time_array_empty (self ):
19
- numpy .array ([])
19
+ np .array ([])
20
20
21
21
def time_array_l1 (self ):
22
- numpy .array ([1 ])
22
+ np .array ([1 ])
23
23
24
24
def time_array_l100 (self ):
25
- numpy .array (self .l100 )
25
+ np .array (self .l100 )
26
26
27
27
def time_array_l (self ):
28
- numpy .array (self .l )
28
+ np .array (self .l )
29
29
30
30
def time_vstack_l (self ):
31
- numpy .vstack (self .l )
31
+ np .vstack (self .l )
32
32
33
33
def time_hstack_l (self ):
34
- numpy .hstack (self .l )
34
+ np .hstack (self .l )
35
35
36
36
def time_dstack_l (self ):
37
- numpy .dstack (self .l )
37
+ np .dstack (self .l )
38
38
39
39
def time_arange_100 (self ):
40
- numpy .arange (100 )
40
+ np .arange (100 )
41
41
42
42
def time_zeros_100 (self ):
43
- numpy .zeros (100 )
43
+ np .zeros (100 )
44
44
45
45
def time_ones_100 (self ):
46
- numpy .ones (100 )
46
+ np .ones (100 )
47
47
48
48
def time_empty_100 (self ):
49
- numpy .empty (100 )
49
+ np .empty (100 )
50
50
51
51
def time_eye_100 (self ):
52
- numpy .eye (100 )
52
+ np .eye (100 )
53
53
54
54
def time_identity_100 (self ):
55
- numpy .identity (100 )
55
+ np .identity (100 )
56
56
57
57
def time_eye_3000 (self ):
58
- numpy .eye (3000 )
58
+ np .eye (3000 )
59
59
60
60
def time_identity_3000 (self ):
61
- numpy .identity (3000 )
61
+ np .identity (3000 )
62
62
63
63
def time_diag_l100 (self ):
64
- numpy .diag (self .l100 )
64
+ np .diag (self .l100 )
65
65
66
66
def time_diagflat_l100 (self ):
67
- numpy .diagflat (self .l100 )
67
+ np .diagflat (self .l100 )
68
68
69
69
def time_diagflat_l50_l50 (self ):
70
- numpy .diagflat ([self .l50 , self .l50 ])
70
+ np .diagflat ([self .l50 , self .l50 ])
71
71
72
72
def time_triu_l10x10 (self ):
73
- numpy .triu (self .l10x10 )
73
+ np .triu (self .l10x10 )
74
74
75
75
def time_tril_l10x10 (self ):
76
- numpy .tril (self .l10x10 )
76
+ np .tril (self .l10x10 )
77
77
78
78
79
79
class MA (Benchmark ):
@@ -82,10 +82,27 @@ def setup(self):
82
82
self .t100 = ([True ] * 100 )
83
83
84
84
def time_masked_array (self ):
85
- numpy .ma .masked_array ()
85
+ np .ma .masked_array ()
86
86
87
87
def time_masked_array_l100 (self ):
88
- numpy .ma .masked_array (self .l100 )
88
+ np .ma .masked_array (self .l100 )
89
89
90
90
def time_masked_array_l100_t100 (self ):
91
- numpy .ma .masked_array (self .l100 , self .t100 )
91
+ np .ma .masked_array (self .l100 , self .t100 )
92
+
93
+
94
+ class CorrConv (Benchmark ):
95
+ params = [[50 , 1000 , 1e5 ],
96
+ [10 , 100 , 1000 , 1e4 ],
97
+ ['valid' , 'same' , 'full' ]]
98
+ param_names = ['size1' , 'size2' , 'mode' ]
99
+
100
+ def setup (self , size1 , size2 , mode ):
101
+ self .x1 = np .linspace (0 , 1 , num = size1 )
102
+ self .x2 = np .cos (np .linspace (0 , 2 * np .pi , num = size2 ))
103
+
104
+ def time_correlate (self , size1 , size2 , mode ):
105
+ np .correlate (self .x1 , self .x2 , mode = mode )
106
+
107
+ def time_convolve (self , size1 , size2 , mode ):
108
+ np .convolve (self .x1 , self .x2 , mode = mode )
0 commit comments