-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccfraud_detectio.py
102 lines (62 loc) · 2.23 KB
/
ccfraud_detectio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# -*- coding: utf-8 -*-
"""ccfraud_detectio.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1458UWQNE97P0n6C3NYbXDcW3G8rw243O
"""
#import libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
#load data set
credit_card_data = pd.read_csv('/content/creditcard.csv')
credit_card_data.head()
credit_card_data.tail()
credit_card_data.info()
credit_card_data.isnull().sum()
credit_card_data['Class'].value_counts()
"""0 --> Normal Transaction
1 --> Fraudulent Transaction
"""
#separating data from analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
#statistical measures of the data
legit.Amount.describe()
fraud.Amount.describe()
#compare values for both transactions
credit_card_data.groupby('Class').mean()
"""Under - Sampling
Build sample dataset containing similar distribution of normal transactions and fraudulent transactions.
Number of fraudulent transactions --> 103
"""
legit_sample = legit.sample(n=103)
"""concatenating two dataframes"""
new_dataset = pd.concat([legit_sample,fraud],axis=0)
new_dataset.head()
new_dataset.tail()
new_dataset['Class'].value_counts()
new_dataset.groupby('Class').mean()
"""splitting data into features and target
"""
X = new_dataset.drop(columns='Class',axis=1)
Y = new_dataset['Class']
print(X)
print(Y)
"""split data into training data and testing data"""
X_train, X_test, Y_train, Y_test =train_test_split(X, Y, test_size=0.2,stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
"""logistic regression"""
model = LogisticRegression()
"""Accuracy Score"""
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on training data',training_data_accuracy)
#accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test )
print('Accuracy score on data', test_data_accuracy)