-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_rules.py
82 lines (62 loc) · 2.51 KB
/
preprocess_rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from SparqlQuery import *
from SparqlQuery import extract_entities, process_triples_file
data = pd.read_csv("datasets/MLaKE/en_qa.csv")
triples = 'all_triples/processed_triples.txt'
rules = 'all_triples/triples_mined-rules1.txt'
#we save the relations inthe triples where entities appear in the graph
def extract_relations(data, triples_file):
with open(triples_file, 'r', encoding='utf-8') as infile:
relations = []
for i, keyword in enumerate(data["question"]):
if keyword not in relations:
entity1 = extract_entities(keyword)
for ent in entity1:
for elt in infile:
elt = elt.strip().split('\t')
#elt = elt.split('\t')
relations.append(elt[1])
return relations
#filter rules
def filter_rules_from_file_by_entity(file_path, entity):
"""
Filters rules from a file where an entity appears in the subject or object.
Args:
file_path: The path to the file containing the rules.
entity: The entity to filter for.
Returns:
A list of rules that contain the specified entity.
"""
filtered_rules = []
try:
with open(file_path, 'r') as file:
for line in file:
rule = line.strip() # Remove leading/trailing whitespace
parts = rule.split("=>")
if len(parts) != 2:
continue # Skip invalid rules
antecedent = parts[0].strip()
consequent = parts[1].strip()
antecedent_parts = antecedent.split()
consequent_parts = consequent.split()
if entity in antecedent_parts or entity in consequent_parts:
filtered_rules.append(rule)
except FileNotFoundError:
print(f"Error: File not found at {file_path}")
except Exception as e:
print(f"An error occurred: {e}")
return filtered_rules
#get the list of rules
def rules_list(relations, rule_file ):
filtered_rules_list = []
for re in relations:
filtered_rules = filter_rules_from_file_by_entity(rule_file, re)
for f in filtered_rules:
#print(f)
parts = f.strip().split('=>')
#parts = [item.replace("?", "") for item in parts]
head = parts[1].split('\t')
Head = head[0].split(' ')
antecedent = parts[0]
consequent = head[0]
filtered_rules_list.append((antecedent, '=>', consequent))
return filtered_rules_list