forked from Kitware/pyLiDAR-SLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitialization.py
303 lines (228 loc) · 11.5 KB
/
initialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Optional, Any
# Hydra and omegaconf
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig, MISSING
from hydra.conf import field, dataclass
# Project imports
from slam.common.pose import Pose
from slam.common.timer import *
from slam.odometry import *
from slam.common.utils import assert_debug
from slam.common.modules import _with_cv2
from slam.training.prediction_modules import _PoseNetPredictionModule
if _with_cv2:
import cv2
from slam.common.registration import ElevationImageRegistration
# ----------------------------------------------------------------------------------------------------------------------
@dataclass
class InitializationConfig:
"""The Initialization Config for registration based SLAM"""
type: str = MISSING
# ----------------------------------------------------------------------------------------------------------------------
class Initialization(ABC):
"""The initialization model which gives a first estimate for the next frame"""
def __init__(self, config: InitializationConfig):
super().__init__()
self.config = config
@abstractmethod
def init(self):
"""Initializes the Algorithm ()"""
raise NotImplementedError("")
@abstractmethod
def next_initial_pose(self, data_dict: Optional[dict] = None):
"""Initializes the Algorithm ()"""
raise NotImplementedError("")
@abstractmethod
def register_motion(self, new_pose: torch.Tensor, data_dict: dict):
"""Registers the new motion into the algorithm"""
raise NotImplementedError("")
# ----------------------------------------------------------------------------------------------------------------------
@dataclass
class NIConfig(InitializationConfig):
"""The configuration without initialization"""
type: str = "ni"
# ----------------------------------------------------------------------------------------------------------------------
class NoInitialization(Initialization):
"""Initialize motion with identity"""
def __init__(self, config: InitializationConfig, pose: Pose, device: torch.device = torch.device("cpu"), **kwargs):
super().__init__(config)
self.device = device
self.next_estimate = None
def init(self):
"""Sets the predicted motion as the identity systematically"""
torch.eye(4, device=self.device).reshape(1, 4, 4)
def next_initial_pose(self, data_dict: Optional[dict] = None):
"""Returns the identity"""
return self.next_estimate
def register_motion(self, relative_pose: torch.Tensor, data_dict: dict):
"""No actions required"""
pass
# ----------------------------------------------------------------------------------------------------------------------
@dataclass
class CVConfig(InitializationConfig):
"""The configuration without initialization"""
type: str = "cv"
# ----------------------------------------------------------------------------------------------------------------------
class ConstantVelocityInitialization(Initialization):
"""A Constant Velocity model for initialization (returns the last registered relative pose at each time step)"""
def __init__(self, config: CVConfig, pose: Pose, device: torch.device = torch.device("cpu"), **kwargs):
super().__init__(config)
self.pose = pose
self.device = device
self.initial_estimate = None
def init(self):
self.initial_estimate = torch.eye(4, dtype=torch.float32, device=self.device).reshape(1, 4, 4)
def next_initial_pose(self, data_dict: Optional[dict] = None):
return self.initial_estimate
def register_motion(self, relative_pose: torch.Tensor, data_dict: dict):
self.initial_estimate = relative_pose
# ----------------------------------------------------------------------------------------------------------------------
if _with_cv2:
@dataclass
class EIConfig(InitializationConfig):
"""Config for Elevation Image feature based 2D alignment"""
type: str = "ei"
debug: bool = False
ni_if_failure: bool = False
registration_config: DictConfig = field(default_factory=lambda: DictConfig({}))
class ElevationImageInitialization(Initialization):
"""Initialize motion by resolving a planar motion registration"""
def __init__(self, ei_config: EIConfig, pose: Pose, device: torch.device = torch.device("cpu")):
super().__init__(ei_config)
self.pose = pose
self.device = device
self.next_estimate = None
# Local variables
self._previous_kpts = None
self._previous_desc = None
self._previous_image = None
self.algorithm = ElevationImageRegistration(DictConfig(ei_config.registration_config))
self.debug = ei_config.debug
self.ni_if_failure = ei_config.ni_if_failure
if self.debug:
self._previous_pc = None
cv2.namedWindow("matches", cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
def __del__(self):
if hasattr(self, "debug") and self.debug:
cv2.destroyWindow("matches")
def init(self):
self.next_estimate = torch.eye(4, dtype=torch.float32, device=self.device).reshape(1, 4, 4)
# Local variables
self._previous_kpts = None
self._previous_desc = None
self._previous_image = None
def next_initial_pose(self, data_dict: Optional[dict] = None):
assert_debug(data_dict is not None and "numpy_pc_0" in data_dict)
next_estimate = self.next_estimate
# Convert new vmap to numpy
pc_numpy = data_dict["numpy_pc_0"]
# Build elevation image
image, kpts, desc = self.algorithm.compute_features(pc_numpy)
# Extract KeyPoints and descriptors
result = None
if self._previous_image is not None and len(kpts) > 50:
result, inliers, inliers_matches = self.algorithm.align_2d(self._previous_kpts, self._previous_desc,
kpts, desc,
self._previous_image, image)
if result is not None:
np_transform = result
next_estimate = torch.from_numpy(np_transform).to(self.device).reshape(1, 4, 4)
if self.debug:
matches_image = cv2.drawMatches(self._previous_image, self._previous_kpts,
image, kpts, inliers_matches, None)
cv2.imshow("matches", matches_image)
cv2.waitKey(5)
if desc is not None:
self._previous_kpts = kpts
self._previous_desc = desc
self._previous_image = image
return next_estimate
def register_motion(self, relative_pose: torch.Tensor, data_dict: dict):
if not self.ni_if_failure:
self.next_estimate = relative_pose
# ----------------------------------------------------------------------------------------------------------------------
@dataclass
class PNConfig(InitializationConfig):
"""
The Initialization config for PoseNet
TODO : Refactor to avoid repetition with PoseNet for Odometry
"""
type: str = "posenet"
train_dir: str = MISSING
checkpoint_file: str = "checkpoint.ckp" # Default checkpoint file generated by trainer
train_config_file: str = "config.yaml" # Default config file generated by trainer
prediction: Dict[str, Any] = MISSING
class PoseNetInitialization(Initialization):
"""Initialization using a PoseNet for LiDAR odometry"""
def __init__(self, config: PNConfig, pose: Pose, device: torch.device = torch.device("cpu")):
super().__init__(config)
self.device = device
self.pose = pose
# Loads the train config from the disk
# TODO refactor
train_dir = Path(config.train_dir)
assert_debug(train_dir.exists())
train_config_path = train_dir / config.train_config_file
checkpoint_path = train_dir / config.checkpoint_file
assert_debug(train_config_path.exists() and checkpoint_path.exists())
self.checkpoint_path = str(checkpoint_path)
# Reads the prediction config from the dict
with open(str(train_config_path), "r") as stream:
train_config = OmegaConf.load(stream)
prediction_config: DictConfig = train_config["training"]["prediction"]
# Construct the Prediction module from the config read from disk
self.prediction_module = _PoseNetPredictionModule(prediction_config,
pose=self.pose)
self.prediction_module = self.prediction_module.to(self.device)
checkpoint_file = config.checkpoint_file
self.train_dir = Path(config.train_dir)
self.checkpoint_file = self.train_dir / checkpoint_file
assert_debug(self.checkpoint_file.exists())
# ----------------------
# Local variable
self.previous_vertex_map = None
self._iter = 0
self.relative_poses = []
def init(self):
self.relative_poses = []
self._iter = 0
# Load PoseNet params from disk
state_dict = torch.load(str(self.checkpoint_file))
self.prediction_module.load_state_dict(state_dict["prediction_module"])
def next_initial_pose(self, data_dict: Optional[dict] = None):
vertex_map = data_dict["vertex_map"]
if self.previous_vertex_map is None:
estimate = torch.eye(4, dtype=torch.float32, device=self.device).reshape(1, 4, 4)
else:
with torch.no_grad():
input_ = torch.cat([self.previous_vertex_map, vertex_map], dim=0).unsqueeze(0)
estimate_params = self.prediction_module(dict(vertex_map=input_))["pose_params"]
estimate = self.pose.build_pose_matrix(estimate_params)
self.previous_vertex_map = vertex_map
return estimate
def register_motion(self, new_pose: torch.Tensor, data_dict: dict):
pass
# ----------------------------------------------------------------------------------------------------------------------
# Hydra Config Store : for the group odometry/initialization
cs = ConfigStore.instance()
cs.store(group="slam/odometry/initialization", name="CV", node=CVConfig)
cs.store(group="slam/odometry/initialization", name="PoseNet", node=PNConfig)
cs.store(group="slam/odometry/initialization", name="NI", node=NIConfig())
if _with_cv2:
cs.store(group="odometry/initialization", name="EI", node=EIConfig)
# ----------------------------------------------------------------------------------------------------------------------
class INITIALIZATION(Enum):
"""A Convenient enum to load the Algorithm from a config dictionary"""
ni = (NoInitialization, NIConfig)
cv = (ConstantVelocityInitialization, CVConfig)
posenet = (PoseNetInitialization, PNConfig)
if _with_cv2:
ei = (ElevationImageInitialization, EIConfig)
@staticmethod
def load(config: InitializationConfig, **kwargs) -> Initialization:
_type = config.type
assert_debug(_type in INITIALIZATION.__members__)
_algo, _config = INITIALIZATION.__members__[_type].value
return _algo(_config(**config), **kwargs)