-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel2.py
316 lines (256 loc) · 12.7 KB
/
Model2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from MPVRPIR import *
from math import ceil
from collections import namedtuple
import random
import cplex
from cplex.exceptions import CplexError
from cplex.callbacks import HeuristicCallback, MIPInfoCallback
import Constructive
from collections import defaultdict
import os
import psutil
class MyInfo(MIPInfoCallback):
def __init__(self, env):
MIPInfoCallback.__init__(self, env)
self.info = defaultdict(lambda: 0)
def __call__(self):
self.info['lb'] = self.get_best_objective_value()
self.info['numnodes'] = self.get_num_nodes()
if self.get_num_nodes() == 0:
self.info['lbroot'] = self.get_best_objective_value()
process = psutil.Process(os.getpid())
if process.memory_percent() > 90:
print('out of memory')
self.abort()
def SolveCplexModel2(P, heu = None, useHeuristicCallback = True, integer = True):
prob = cplex.Cplex()
prob.objective.set_sense(prob.objective.sense.minimize)
# build extended graph
# vertices
Vext = [(0, None)] + [(v, a) for v in range(1, P.numVertices) for a in range(P.numTasks[P.request[v]])]
Vidx = {v:k for (k, v) in enumerate(Vext)}
numVext = len(Vext)
# lambda function for getting activity times on the extended graph
activityTime = lambda k, v: P.taskTimes[k][Vext[v][0]][Vext[v][1]]
# lambda function for getting translation times on the extended graph
transTime = lambda u, v: 0 if Vext[u][0] == Vext[v][0] else P.travelTime[Vext[u][0]][Vext[v][0]]
# creating the variables
Variable = namedtuple('Variable', ['name', 'obj', 'lb', 'ub', 'type'])
# x[k,h,u,v] in {0,1}: 1 if team k goes from u to v on day h
# x is a list of tuples, one for each variable x, each tuple consists of (name, obj, lb, ub, type)
xname = lambda k,h,u,v: 'x_{}_{}_{}_{}'.format(k,h,u,v)
x = [ Variable(name=xname(k,h,u,v), obj=0, lb=0, ub=1, type='I') for k in range(P.numTeams) for h in range(P.maxDays) for u in range(numVext) for v in range(numVext) ]
name, obj, lb, ub, types = list(zip(*x))
if integer:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub, types = types)
else:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub)
# q[k,h,u,v] in R+: moment in which team k arrives at vertex v comming from u on day h
qname = lambda k,h,u,v: 'q_{}_{}_{}_{}'.format(k,h,u,v)
q = [ Variable(name=qname(k,h,u,v), obj=0, lb=0, ub=cplex.infinity, type='C') for k in range(P.numTeams) for h in range(P.maxDays) for u in range(numVext) for v in range(numVext) ]
name, obj, lb, ub, types = list(zip(*q))
if integer:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub, types = types)
else:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub)
# y[k,h,i,v] in {0,1}: 1 if team k executes activity i of customer v on day h
yname = lambda k,h,i,v: 'y_{}_{}_{}_{}'.format(k,h,i,v)
y = [ Variable(name=yname(k,h,i,v), obj=0, lb=0, ub=1, type='I') for k in range(P.numTeams) for h in range(P.maxDays) for v in range(1, P.numVertices) for i in range(P.numTasks[P.request[v]])]
name, obj, lb, ub, types = list(zip(*y))
# setting branching priority
if integer:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub, types = types)
prob.order.set([(var.name, 10, prob.order.branch_direction.default) for var in y])
else:
prob.variables.add(names = name, obj = obj, lb = lb, ub = ub)
# p in Z+: number of days
p = [ Variable(name='p', obj = 1, lb = 0, ub = cplex.infinity, type = 'C' )]
if integer:
prob.variables.add(names = ['p'], obj = [1], lb = [0], ub = [cplex.infinity], types = ['C'])
else:
prob.variables.add(names = ['p'], obj = [1], lb = [0], ub = [cplex.infinity])
# Every activity of the service request by a custumer must must be executed
for v in range(1, P.numVertices):
for i in range(P.numTasks[P.request[v]]):
vars, coefs = [], []
for k in range(P.numTeams):
for h in range(P.maxDays):
vars.append(yname(k,h,i,v))
coefs.append(1)
prob.linear_constraints.add(lin_expr = [[vars,coefs]], senses = ['E'], rhs = [1])
# An activity can only be executed in a place if the activity on which it depends has been completed before
for v in range(1, P.numVertices):
for i in range(P.numTasks[P.request[v]]):
for j in P.Dependencies[ P.request[v] ][i]:
vars, coefs = [], []
for h in range(P.maxDays):
for k in range(P.numTeams):
vars.append(yname(k, h, i, v))
coefs.append(P.availableTime*h)
vars.append(yname(k, h, j, v))
coefs.append(-P.availableTime*h - activityTime(k, Vidx[(v, j)]))
for u in range(numVext):
if Vext[u] != (v, i):
vars.append(qname(k, h, u, Vidx[(v, i)]))
coefs.append(1)
if Vext[u] != (v, j):
vars.append(qname(k, h, u, Vidx[(v, j)]))
coefs.append(-1)
prob.linear_constraints.add(lin_expr=[[vars, coefs]], senses = ['G'], rhs = [0] )
# If an activity is executed in a place on a period, then the corresponding team has to visit the place
for v in range(1, numVext):
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [yname(k,h,Vext[v][1],Vext[v][0])], [-1]
for u in range(numVext):
if u == v:
continue
vars.append(xname(k,h,u,v))
coefs.append(1)
prob.linear_constraints.add(lin_expr=[[vars,coefs]], senses = ['E'], rhs = [0])
# If an activity is executed in a place on a period, then the corresponding team has to visit the place
for v in range(1, numVext):
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [yname(k,h,Vext[v][1],Vext[v][0])], [-1]
for u in range(numVext):
if u == v:
continue
vars.append(xname(k,h,v,u))
coefs.append(1)
prob.linear_constraints.add(lin_expr=[[vars,coefs]], senses = ['E'], rhs = [0])
# A team cannot return to depot and leave again
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [], []
for v in range(1, numVext):
vars.append(xname(k,h,0,v))
coefs.append(1)
prob.linear_constraints.add(lin_expr = [[vars, coefs]], senses = ['L'], rhs = [1])
# Correct value of p
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = ['p'], [-1]
for v in range(1, numVext):
vars.append(xname(k, h, 0, v))
coefs.append(h+1)
prob.linear_constraints.add(lin_expr=[[vars, coefs]], senses=['L'], rhs= [0])
# flow out of the depot
for v in range(1, numVext):
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [xname(k,h,0,v), qname(k, h, 0, v)], [-transTime(0, v), 1]
prob.linear_constraints.add(lin_expr=[[vars,coefs]], senses = ['G'], rhs = [0])
# flow conservation
for v in range(1, numVext):
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [], []
for u in range(numVext):
if u == v:
continue
vars.extend( [qname(k, h, u, v), xname(k, h, v, u), qname(k, h, v, u)] )
coefs.extend( [1, transTime(v, u), -1] )
vars.append(yname(k, h, Vext[v][1], Vext[v][0]))
coefs.append(activityTime(k, v))
prob.linear_constraints.add(lin_expr=[[vars,coefs]], senses = ['L'], rhs = [0])
# flow capacity
for v in range(numVext):
for u in range(numVext):
if u == v:
continue
for k in range(P.numTeams):
for h in range(P.maxDays):
vars, coefs = [xname(k,h,u,v), qname(k, h, u, v)], [-P.availableTime, 1]
prob.linear_constraints.add(lin_expr=[[vars,coefs]], senses = ['L'], rhs = [0])
# create mipstart solution
if integer and heu:
mipstart = Model2MipStartFromHeuristic(P, heu, x+q+y+p, xname, qname, yname, Vidx)
prob.MIP_starts.add(mipstart, prob.MIP_starts.effort_level.check_feasibility)
# register heuristic callback
if integer and useHeuristicCallback:
heuCallback = prob.register_callback(Model2HeuristicCallback)
heuCallback.P = P
heuCallback.xname, heuCallback.yname, heuCallback.qname = xname, yname, qname
heuCallback.Vidx = Vidx
heuCallback.vars = x+y+q+p
if integer:
ic = prob.register_callback(MyInfo)
info = ic.info
else:
info = {}
prob.set_log_stream(None)
prob.set_results_stream(None)
prob.set_error_stream(None)
prob.set_warning_stream(None)
prob.parameters.timelimit.set(3600)
prob.solve()
ub = prob.solution.get_objective_value()
if integer:
info['ub'] = ub
info['ubheu'] = len(heu)
info['numnodes'] += 1
info['status'] = prob.solution.status[prob.solution.get_status()]
else:
info['lb'] = ub
if integer:
ub = int(ub)
solution = []
for h in range(ub):
solution.append( [[(0, None, 0)] for k in range(P.numTeams)] )
for k in range(P.numTeams):
s = 0
while True:
t = 0
for v in range(numVext):
vx = prob.solution.get_values(xname(k,h,s,v))
if vx > 0:
t = v
break
q = prob.solution.get_values(qname(k, h, s, t))
s = t
solution[-1][k].append((Vext[s][0], Vext[s][1], q))
if s == 0:
break
else:
solution = None
return info, solution
# Heuristic callback class for model 2
class Model2HeuristicCallback(HeuristicCallback):
def __call__(self):
cur = self.get_incumbent_objective_value()
varnames = [var.name for var in self.vars]
varvalues = self.get_values(varnames)
vardict = dict(zip(varnames, varvalues))
def ChooseTaskHeuristicCallback(team, partialSolution, availableTasks, start, end):
currentDay = len(partialSolution)-1
if currentDay >= cur:
return availableTasks[0]
lastva = partialSolution[-1][team][-1][0], partialSolution[-1][team][-1][1]
xval = lambda v, a: vardict[ self.xname(team, currentDay, self.Vidx[lastva], self.Vidx[v,a]) ]
yval = lambda v, a: vardict[ self.yname(team, currentDay, a, v) ]
return max( availableTasks, key = lambda va: xval(*va) + yval(*va) )
heu = Constructive.Constructive(self.P, ChooseTaskHeuristicCallback)
if len(heu) < cur:
print('heuristic callback found new incumbent: ', len(heu))
solution = Model2MipStartFromHeuristic( self.P, heu, self.vars, self.xname, self.qname, self.yname, self.Vidx)
self.set_solution(solution)
# Creates a starting solution for the model given the heuristic solution
def Model2MipStartFromHeuristic(P, heu, vars, xname, qname, yname, Vidx):
# heu is a list of days
# each day is a list of teams
# each team is a list of activities
# each activity is a tuple (vertex, activity, starting time)
mipdict = {var.name:0 for var in vars}
mipdict['p'] = len(heu)
for h in range(len(heu)):
for k in range(len(heu[h])):
for (v1, a1, s1), (v2, a2, s2) in zip(heu[h][k], heu[h][k][1:]):
mipdict[xname(k, h, Vidx[v1, a1], Vidx[v2, a2])] = 1
mipdict[qname(k, h, Vidx[v1, a1], Vidx[v2, a2])] = s2
if v2 != 0:
mipdict[yname(k, h, a2, v2)] = 1
return list(zip(*mipdict.items()))
def Solve(problem, initialSolution, integer = True):
problem.maxDays = len(initialSolution)
return SolveCplexModel2(problem, initialSolution, useHeuristicCallback = True, integer = integer)