Skip to content

Commit 951ec4b

Browse files
committed
Implement SparseLU factorization
Add `solve_upper_triangular` to `CsrMatrix` This allows a sparse matrix to be used for efficient solving with a dense LU decomposition. Add CscBuilder For partial construction of Csc matrices Start working on actual LU factorization Complete basic version of sparse LU factorization Reformat to compile in old version Add LU tests Add upper triangular solve Complete tests of Sparse LU factorization
1 parent 0b89950 commit 951ec4b

15 files changed

+1122
-8
lines changed

nalgebra-sparse/src/cs.rs

+54-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ use num_traits::One;
44

55
use nalgebra::Scalar;
66

7-
use crate::pattern::SparsityPattern;
7+
use crate::pattern::{BuilderInsertError, SparsityPattern, SparsityPatternBuilder};
88
use crate::utils::{apply_permutation, compute_sort_permutation};
99
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};
1010

@@ -700,3 +700,56 @@ where
700700

701701
Ok(())
702702
}
703+
704+
#[derive(Debug, Clone, PartialEq, Eq)]
705+
pub struct CsBuilder<T> {
706+
sparsity_builder: SparsityPatternBuilder,
707+
values: Vec<T>,
708+
}
709+
710+
impl<T> CsBuilder<T> {
711+
/// Constructs a new CsBuilder of the given size.
712+
pub fn new(major_dim: usize, minor_dim: usize) -> Self {
713+
Self {
714+
sparsity_builder: SparsityPatternBuilder::new(major_dim, minor_dim),
715+
values: vec![],
716+
}
717+
}
718+
/// Given an existing CsMatrix, allows for modification by converting it into a builder.
719+
pub fn from_mat(mat: CsMatrix<T>) -> Self {
720+
let CsMatrix {
721+
sparsity_pattern,
722+
values,
723+
} = mat;
724+
725+
CsBuilder {
726+
sparsity_builder: SparsityPatternBuilder::from(sparsity_pattern),
727+
values,
728+
}
729+
}
730+
/// Backtracks to a given major index
731+
pub fn revert_to_major(&mut self, maj: usize) -> bool {
732+
if !self.sparsity_builder.revert_to_major(maj) {
733+
return false;
734+
}
735+
736+
self.values.truncate(self.sparsity_builder.num_entries());
737+
true
738+
}
739+
pub fn insert(&mut self, maj: usize, min: usize, val: T) -> Result<(), BuilderInsertError> {
740+
self.sparsity_builder.insert(maj, min)?;
741+
self.values.push(val);
742+
Ok(())
743+
}
744+
pub fn build(self) -> CsMatrix<T> {
745+
let CsBuilder {
746+
sparsity_builder,
747+
values,
748+
} = self;
749+
let sparsity_pattern = sparsity_builder.build();
750+
CsMatrix {
751+
sparsity_pattern,
752+
values,
753+
}
754+
}
755+
}

nalgebra-sparse/src/csc.rs

+295-3
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,14 @@
77
mod csc_serde;
88

99
use crate::cs;
10-
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
10+
use crate::cs::{CsBuilder, CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
1111
use crate::csr::CsrMatrix;
12-
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
12+
use crate::pattern::{
13+
BuilderInsertError, SparsityPattern, SparsityPatternFormatError, SparsityPatternIter,
14+
};
1315
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};
1416

15-
use nalgebra::Scalar;
17+
use nalgebra::{RealField, Scalar};
1618
use num_traits::One;
1719
use std::slice::{Iter, IterMut};
1820

@@ -553,6 +555,269 @@ impl<T> CscMatrix<T> {
553555
self.filter(|i, j, _| i >= j)
554556
}
555557

558+
/// Solves a lower triangular system, `self` is a matrix of NxN, and `b` is a column vector of size N
559+
/// Assuming that b is dense.
560+
pub fn dense_lower_triangular_solve(&self, b: &[T], out: &mut [T], unit_diagonal: bool)
561+
where
562+
T: RealField + Copy,
563+
{
564+
assert_eq!(self.nrows(), self.ncols());
565+
assert_eq!(self.ncols(), b.len());
566+
assert_eq!(out.len(), b.len());
567+
out.copy_from_slice(b);
568+
let n = b.len();
569+
570+
for i in 0..n {
571+
let col = self.col(i);
572+
let mut iter = col.row_indices().iter().zip(col.values().iter()).peekable();
573+
while iter.next_if(|n| *n.0 < i).is_some() {}
574+
if let Some(n) = iter.peek() {
575+
if *n.0 == i && !unit_diagonal {
576+
assert!(*n.0 <= i);
577+
out[i] /= *n.1;
578+
iter.next();
579+
}
580+
}
581+
let mul = out[i];
582+
for (&ri, &v) in col.row_indices().iter().zip(col.values().iter()) {
583+
use std::cmp::Ordering::*;
584+
// ensure that only using the lower part
585+
match ri.cmp(&i) {
586+
Greater => out[ri] -= v * mul,
587+
Equal | Less => {}
588+
}
589+
}
590+
}
591+
}
592+
593+
/// Solves an upper triangular system, `self` is a matrix of NxN, and `b` is a column vector of size N
594+
/// Assuming that b is dense.
595+
pub fn dense_upper_triangular_solve(&self, b: &[T], out: &mut [T])
596+
where
597+
T: RealField + Copy,
598+
{
599+
assert_eq!(self.nrows(), self.ncols());
600+
assert_eq!(self.ncols(), b.len());
601+
assert_eq!(out.len(), b.len());
602+
out.copy_from_slice(b);
603+
let n = b.len();
604+
605+
for i in (0..n).rev() {
606+
let col = self.col(i);
607+
let mut iter = col
608+
.row_indices()
609+
.iter()
610+
.zip(col.values().iter())
611+
.rev()
612+
.peekable();
613+
while iter.next_if(|n| *n.0 > i).is_some() {}
614+
if let Some(n) = iter.peek() {
615+
if *n.0 == i {
616+
out[i] /= *n.1;
617+
iter.next();
618+
}
619+
}
620+
// introduce a NaN, intentionally, if the diagonal doesn't have a value.
621+
let mul = out[i];
622+
for (&row, &v) in iter {
623+
use std::cmp::Ordering::*;
624+
match row.cmp(&i) {
625+
Less => out[row] -= v * mul,
626+
Equal | Greater => {}
627+
}
628+
}
629+
}
630+
}
631+
632+
/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
633+
/// sparse.
634+
/// sparsity_idxs should be precomputed using the sparse_lower_triangle.
635+
pub fn sparse_upper_triangular_solve_sorted(
636+
&self,
637+
b_idxs: &[usize],
638+
b: &[T],
639+
640+
out_sparsity_pattern: &[usize],
641+
out: &mut [T],
642+
) where
643+
T: RealField + Copy,
644+
{
645+
assert_eq!(self.nrows(), self.ncols());
646+
assert_eq!(b_idxs.len(), b.len());
647+
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));
648+
649+
assert_eq!(out_sparsity_pattern.len(), out.len());
650+
assert!(out_sparsity_pattern.iter().all(|&bi| bi < self.ncols()));
651+
652+
// initialize out with b
653+
out.fill(T::zero());
654+
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
655+
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
656+
out[out_pos] = bv;
657+
}
658+
659+
for (i, &row) in out_sparsity_pattern.iter().enumerate().rev() {
660+
let col = self.col(row);
661+
let mut iter = col
662+
.row_indices()
663+
.iter()
664+
.zip(col.values().iter())
665+
.rev()
666+
.peekable();
667+
668+
while iter.next_if(|n| *n.0 > row).is_some() {}
669+
match iter.peek() {
670+
Some((&r, &l_val)) if r == row => out[i] /= l_val,
671+
// here it now becomes implicitly 0,
672+
// likely this should introduce NaN or some other behavior.
673+
_ => {}
674+
}
675+
let mul = out[i];
676+
for (ni, &nrow) in out_sparsity_pattern[i + 1..].iter().enumerate().rev() {
677+
assert!(nrow > row);
678+
while iter.next_if(|n| *n.0 > nrow).is_some() {}
679+
let l_val = match iter.peek() {
680+
Some((&r, &l_val)) if r == nrow => l_val,
681+
_ => continue,
682+
};
683+
out[ni] -= l_val * mul;
684+
}
685+
}
686+
}
687+
688+
/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
689+
/// sparse.
690+
/// sparsity_idxs should be precomputed using the sparse_lower_triangle.
691+
/// Assumes that the diagonal of the sparse matrix is all 1 if `assume_unit` is true.
692+
pub fn sparse_lower_triangular_solve(
693+
&self,
694+
b_idxs: &[usize],
695+
b: &[T],
696+
// idx -> row
697+
// for now, is permitted to be unsorted
698+
// TODO maybe would be better to enforce sorted, but would have to sort internally.
699+
out_sparsity_pattern: &[usize],
700+
out: &mut [T],
701+
assume_unit: bool,
702+
) where
703+
T: RealField + Copy,
704+
{
705+
assert_eq!(self.nrows(), self.ncols());
706+
assert_eq!(b.len(), b_idxs.len());
707+
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));
708+
709+
assert_eq!(out_sparsity_pattern.len(), out.len());
710+
assert!(out_sparsity_pattern.iter().all(|&i| i < self.ncols()));
711+
712+
let is_sorted = (0..out_sparsity_pattern.len() - 1)
713+
.all(|i| out_sparsity_pattern[i] < out_sparsity_pattern[i + 1]);
714+
if is_sorted {
715+
return self.sparse_lower_triangular_solve_sorted(
716+
b_idxs,
717+
b,
718+
out_sparsity_pattern,
719+
out,
720+
assume_unit,
721+
);
722+
}
723+
724+
// initialize out with b
725+
out.fill(T::zero());
726+
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
727+
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
728+
out[out_pos] = bv;
729+
}
730+
731+
for (i, &row) in out_sparsity_pattern.iter().enumerate() {
732+
let col = self.col(row);
733+
if !assume_unit {
734+
if let Some(l_val) = col.get_entry(row) {
735+
out[i] /= l_val.into_value();
736+
} else {
737+
// diagonal is 0, non-invertible
738+
out[i] /= T::zero();
739+
}
740+
}
741+
let mul = out[i];
742+
for (ni, &nrow) in out_sparsity_pattern.iter().enumerate() {
743+
if nrow <= row {
744+
continue;
745+
}
746+
// TODO in a sorted version may be able to iterate without
747+
// having the cost of binary search at each iteration
748+
let l_val = if let Some(l_val) = col.get_entry(nrow) {
749+
l_val.into_value()
750+
} else {
751+
continue;
752+
};
753+
out[ni] -= l_val * mul;
754+
}
755+
}
756+
}
757+
/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
758+
/// sparse.
759+
/// sparsity_idxs should be precomputed using the sparse_lower_triangle pattern.
760+
///
761+
/// `out_sparsity_pattern` must also be pre-sorted.
762+
///
763+
/// Assumes that the diagonal of the sparse matrix is all 1 if `assume_unit` is true.
764+
pub fn sparse_lower_triangular_solve_sorted(
765+
&self,
766+
// input vector idxs & values
767+
b_idxs: &[usize],
768+
b: &[T],
769+
// idx -> row
770+
// for now, is permitted to be unsorted
771+
// TODO maybe would be better to enforce sorted, but would have to sort internally.
772+
out_sparsity_pattern: &[usize],
773+
out: &mut [T],
774+
assume_unit: bool,
775+
) where
776+
T: RealField + Copy,
777+
{
778+
assert_eq!(self.nrows(), self.ncols());
779+
assert_eq!(b.len(), b_idxs.len());
780+
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));
781+
782+
assert_eq!(out_sparsity_pattern.len(), out.len());
783+
assert!(out_sparsity_pattern.iter().all(|&i| i < self.ncols()));
784+
785+
// initialize out with b
786+
// TODO can make this more efficient by keeping two iterators in sorted order
787+
out.fill(T::zero());
788+
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
789+
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
790+
out[out_pos] = bv;
791+
}
792+
// end init
793+
794+
// assuming that the output sparsity pattern is sorted
795+
// iterate thru
796+
for (i, &row) in out_sparsity_pattern.iter().enumerate() {
797+
let col = self.col(row);
798+
let mut iter = col.row_indices().iter().zip(col.values().iter()).peekable();
799+
if !assume_unit {
800+
while iter.next_if(|n| *n.0 < row).is_some() {}
801+
match iter.peek() {
802+
Some((&r, &l_val)) if r == row => out[i] /= l_val,
803+
// here it now becomes implicitly 0,
804+
// likely this should introduce NaN or some other behavior.
805+
_ => {}
806+
}
807+
}
808+
let mul = out[i];
809+
for (ni, &nrow) in out_sparsity_pattern.iter().enumerate().skip(i + 1) {
810+
assert!(nrow > row);
811+
while iter.next_if(|n| *n.0 < nrow).is_some() {}
812+
let l_val = match iter.peek() {
813+
Some((&r, &l_val)) if r == nrow => l_val,
814+
_ => continue,
815+
};
816+
out[ni] -= l_val * mul;
817+
}
818+
}
819+
}
820+
556821
/// Returns the diagonal of the matrix as a sparse matrix.
557822
#[must_use]
558823
pub fn diagonal_as_csc(&self) -> Self
@@ -784,3 +1049,30 @@ where
7841049
self.lane_iter.next().map(|lane| CscColMut { lane })
7851050
}
7861051
}
1052+
1053+
/// An incremental builder for a Csc matrix.
1054+
#[derive(Debug, Clone, PartialEq, Eq)]
1055+
pub struct CscBuilder<T>(CsBuilder<T>);
1056+
1057+
impl<T> CscBuilder<T> {
1058+
/// Constructs a new instance of a Csc Builder.
1059+
pub fn new(rows: usize, cols: usize) -> Self {
1060+
Self(CsBuilder::new(cols, rows))
1061+
}
1062+
/// Convert back from a matrix to a CscBuilder.
1063+
pub fn from_mat(mat: CscMatrix<T>) -> Self {
1064+
Self(CsBuilder::from_mat(mat.cs))
1065+
}
1066+
/// Backtracks back to column `col`, deleting all entries ahead of it.
1067+
pub fn revert_to_col(&mut self, col: usize) -> bool {
1068+
self.0.revert_to_major(col)
1069+
}
1070+
/// Inserts a value into the builder. Must be called in ascending col, row order.
1071+
pub fn insert(&mut self, row: usize, col: usize, val: T) -> Result<(), BuilderInsertError> {
1072+
self.0.insert(col, row, val)
1073+
}
1074+
/// Converts this builder into a valid CscMatrix.
1075+
pub fn build(self) -> CscMatrix<T> {
1076+
CscMatrix { cs: self.0.build() }
1077+
}
1078+
}

0 commit comments

Comments
 (0)