diff --git a/Final.ipynb b/Final.ipynb index 68b2746..c5c6c79 100644 --- a/Final.ipynb +++ b/Final.ipynb @@ -1,12 +1,18 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import libraries" + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "# Import libraries\n", "import numpy as np\n", "import pandas as pd\n", "from welly import Project, Well\n", @@ -14,17 +20,15 @@ ] }, { - "cell_type": "code", - "execution_count": 2, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "# Get list of well logs available in working directory" + "## Get a list of well logs available in working directory" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -42,14 +46,7 @@ "10-09-2020 18:23 12,251,857 15_9-F-1B.LAS\n", "10-09-2020 18:23 13,309,432 15_9-F-1C.LAS\n", " 5 File(s) 55,733,866 bytes\n", - " 0 Dir(s) 94,081,044,480 bytes free\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The system cannot find the path specified.\n" + " 0 Dir(s) 77,406,220,288 bytes free\n" ] } ], @@ -57,9 +54,23 @@ "ls *.LAS" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a Project" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> Import all the LAS files to create Project object. The output lists the time taken to import a lot and also the well names of the logs. " + ] + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -68,33 +79,52 @@ "text": [ "0it [00:00, ?it/s]C:\\ProgramData\\Anaconda3\\lib\\site-packages\\welly\\well.py:173: FutureWarning: From v0.5 the default will be 'original', keeping whatever is used in the LAS file. If you want to force conversion to metres, change your code to use `index='m'`.\n", " warnings.warn(m, FutureWarning)\n", - "5it [00:09, 1.94s/it]\n" + "5it [00:10, 2.16s/it]" ] }, { - "data": { - "text/html": [ - "
IndexUWIDataCurves
011A21 curvesABDCQF01, ABDCQF02, ABDCQF03, ABDCQF04, BS, CALI, DRHO, DT, DTS, GR, NPHI, PEF, RACEHM, RACELM, RD, RHOB, RM, ROP, RPCEHM, RPCELM, RT
111B19 curvesABDCQF01, ABDCQF02, ABDCQF03, ABDCQF04, BS, CALI, DRHO, GR, NPHI, PEF, RACEHM, RACELM, RD, RHOB, RM, ROP, RPCEHM, RPCELM, RT
21A19 curvesABDCQF01, ABDCQF02, ABDCQF03, ABDCQF04, BS, CALI, DRHO, DT, DTS, GR, NPHI, PEF, RACEHM, RACELM, RHOB, ROP, RPCEHM, RPCELM, RT
31B22 curvesABDCQF01, ABDCQF02, ABDCQF03, ABDCQF04, BS, CALI, DRHO, DT, DTS, GR, NBGRCFM, NPHI, PEF, RACEHM, RACELM, RD, RHOB, RM, ROP, RPCEHM, RPCELM, RT
41C20 curvesABDCQF01, ABDCQF02, ABDCQF03, ABDCQF04, BS, CALI, DRHO, GR, NBGRCFM, NPHI, PEF, RACEHM, RACELM, RD, RHOB, RM, ROP, RPCEHM, RPCELM, RT
" - ], - "text/plain": [ - "Project(5 wells: 11A, 11B, 1A, 1B, 1C)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "11A\n", + "11B\n", + "1A\n", + "1B\n", + "1C\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] } ], "source": [ - "#Create a project class with all the well logs\n", "p = Project.from_las('./*.las')\n", - "#Print summary of imported files\n", - "p" + "print(p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Export data to a Pandas dataframe for scientific computing workflows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> Pandas can provide a seamless integration into existing workflows and databases. However, the Welly library provides an intitutive way of working with well and logs rather instead of dataframes.\n", + "\n", + ">The output displays the well logs of well 11A from 2500m to 3000m stored in the Pandas dataframe." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -481,20 +511,33 @@ "[5000 rows x 22 columns]" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "#Data can be exported to a pandas dataframe to switch to classic scintific computing workflows\n", "df_wells = p.df()\n", "df_wells.loc['11A'].query('Depth > 2500 & Depth < 3000')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a Well object from the project" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> A well object 'well_11A' is created from the Project. The output prints the header of the LAS file." + ] + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -506,29 +549,51 @@ "Well(uwi: '11A', 21 curves: ['ABDCQF01', 'ABDCQF02', 'ABDCQF03', 'ABDCQF04', 'BS', 'CALI', 'DRHO', 'DT', 'DTS', 'GR', 'NPHI', 'PEF', 'RACEHM', 'RACELM', 'RD', 'RHOB', 'RM', 'ROP', 'RPCEHM', 'RPCELM', 'RT'])" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "#Create a well object from the project\n", "well_11A = p.get_well('11A')\n", "well_11A" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Gamma ray and NPHI-RHOB well logs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> The object segment stores a section of the well log. The section is defined by a basis which can either be the Depth or Time data\n", + ">The depth of the Hugin formation in the 11A well is 3600m to 3700m. Gamma ray, Neutron Porosity, Density and Deep resistivity logs are segmented for analysis. \n", + ">The Output displays the Gamma ray log and also indicates the overlay of the Density and Neutron Porosity logs. The wells here are made using the Plotly library but other pltting libraries can easily be integrated" + ] + }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -546,9 +611,6 @@ } ], "source": [ - "#Show method to plot a well\n", - "#g = well_11A.to_basis(start=1207, stop=1215)\n", - "#well_11A.data['GR'].plot()\n", "segment_GR = well_11A.data['GR'].to_basis(start=3590, stop=3710)\n", "segment_NPHI = well_11A.data['NPHI'].to_basis(start=3590, stop=3710)\n", "segment_RHOB = well_11A.data['RHOB'].to_basis(start=3590, stop=3710)\n", @@ -572,9 +634,24 @@ "ax2.fill_betweenx(segment_NPHI.basis, segment_RHOB, segment_2, color='red', alpha=0.5, where = (segment_2>segment_RHOB))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot all the Gamma Ray logs in a project" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> An important part of geologic interpretation is correlating logs from different wells. Here, the Gamma ray logs of all wells in the Project are plotted.\n", + ">Despiking was performed in the well log of well 1C. A Median window based filter is available as a part of the Welly library is used. " + ] + }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -591,8 +668,6 @@ } ], "source": [ - "## Plot all the Gamma Ray logs in a project\n", - "#alias = {'GR': ['GR', 'GRC', 'NGT']}\n", "fig, axs = plt.subplots(figsize=(9, 18), ncols=len(p)) \n", "\n", "for i, (ax, w) in enumerate(zip(axs, p)):\n", @@ -615,9 +690,23 @@ "fig.tight_layout()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Post processing of well logs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> Calculate the porosity, water saturation, permeability from the equations provided in the Petrophysical Interpretation report. Log segments have been used to calculate these properties." + ] + }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -638,24 +727,31 @@ "SWt = 0.07/ ((PHIF**m)*segment_RT)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> An industry standard cross plot of the Porosity vs Permeability is plotted. The output indicates that most of sand has a permeblity of around 100 mD. Sand sections with a permeability above 1000 mD indicate the presence of a thief zone." + ] + }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.0, 0.3)" + "Text(0, 0.5, 'KLOGH (mD)')" ] }, - "execution_count": 69, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGbCAYAAADawqrfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXDb533v+/cDcANpkiAoEuKilaQ2S7JsM16k2HKqxW6q1lHanGY5jU/jue7opsuZTtqmZ7K0yWRuZuqb05P0RnNyqyRKT9zUvSdNfNQ4lqnITqzNoWytFmVQliwRXEUSJMWd4HP/IMADUlzAFQDxec1oSD8EfnwA0IMvvs/3+T7GWouIiIhIInHEegIiIiIiM6UARkRERBKOAhgRERFJOApgREREJOEogBEREZGEkxLrCUxn2bJldvXq1bGehoiIiMyDs2fP3rbWFsz1OnEfwKxevZrq6upYT0NERETmgTHm/fm4jpaQREREJOEogBEREZGEowBGREREEo4CGBEREUk4CmBEREQk4SiAERERkYSjAEZEREQSjgIYERERSTgKYERERCThKIARERGRhKMARkRERBKOAhgRERFJOApgREREJOHE/WnUIiIisebz+ag6WYW/xU9JQQm7t++moqIi1tNKalFlYIwxN4wxF40x54wx1aExjzHmVWOML/Q1L+L2f22MqTXGXDXGPBkx/mDoOrXGmG8aY8z8PyQREZH54/P5OHTkEF3eLkp3ltLl7eLQkUP4fL5YTy2pzWQJ6UPW2m3W2srQf38eOGatrQCOhf4bY8wm4OPAvcBTwLeNMc7QfQ4CzwEVoX9Pzf0hiIiILJyqk1V4NnpwF7hxOBy4C9x4NnqoOlkV66kltbnUwDwNHA59fxj4SMT4j6y1/dba60At8JAxpgjIsdaestZa4AcR9xEREYlL/hY/Ofk5Y8Zy8nOob6mP0YwEoq+BscBRY4wF/ru19juA11rbAGCtbTDGFIZuWwKcjrhvXWhsMPT9+PG7GGOeYyRTw8qVK6OcooiIyPxLtam8cvQV+h395GXnsaFsA+kmneKC4lhPLalFm4HZYa19APhN4LPGmMenuO1EdS12ivG7B639jrW20lpbWVBQEOUURURE5pfP58Pf7qe9sZ30Zen03tPLsTeOce3kNXZv3x3r6SW1qDIw1tr60NdmY8y/AQ8BTcaYolD2pQhoDt28DlgRcfdSoD40XjrBuIiISFyqOllF+ePlrOhdQc2lGgKBAHnOPIpyirQLKcamDWCMMVmAw1rbFfp+L/AV4CXgGeDroa8/Dd3lJeAFY8w3gGJGinXftNYGjTFdxphHgDPAp4FvzfcDEhERmS/+Fj+lm0pxOBx4V3oBGB4exv+6P8Yzk2gyMF7g30I7nlOAF6y1PzfG/Bp40RjzLHAT+BiAtfayMeZF4B1gCPistTYYutYB4PuAC3g59E9ERCQulRSU0NnaibvAPTrW2dqp+pc4MG0AY619D7hvgvFWYNck9/ka8LUJxquBzTOfpoiIyOLbvX03h44cAkZ2HnW2dtJ2pY39+/bHeGaiowREREQmUVFRwbP7niW7KRv/636ym7J5dt+zqn+JAzpKQEREZAoVFRUKWOKQMjAiIiKScBTAiIiISMJRACMiIiIJRwGMiIiIJBwFMCIiIpJwFMCIiIhIwlEAIyIiIglHfWBEREQm4PP5qDpZhb/FT0lBCbu371Y/mDiiDIyIiMg4Pp+PQ0cO0eXtonRnKV3eLg4dOYTP54v11CREAYyIiMg4VSer8Gz04C5w43A4cBe48Wz0UHWyKtZTkxAFMCIiIuP4W/zk5OeMGcvJz6G+pT5GM5LxVAMjIiIyTkowhVf+9RUGggO43W42bN5Auiud4oLiWE9NQpSBERERieDz+WjobqA9tZ30Len0LO/h2C+OUfvLWnZv3x3r6UmIMjAiIiIRqk5WUba9jFJbSs21GgJdAfKW51GSVqJdSHFEAYyIiEgEf4uf0k2lOBwOvIVeAIaHh/G/7o/xzCSSlpBEREQilBSU0NnaOWass7VT9S9xRgGMiIhIhN3bd9N2pY1AS4Dh4WECLQHarrSp/iXOaAlJRESS0mSddisqKnh237MjP7vkp7igmP379qv+Jc4Ya22s5zClyspKW11dHetpiIjIEhLutOvZ6CEnP4fO1k7arrTx7L5nFagsMGPMWWtt5VyvoyUkERFJOuq0m/gUwIiISNJRp93EpwBGRESSjnYaJT4FMCIiknS00yjxKYAREZGkE95plN2Ujf91P9lN2SrgTTDaRi0iIkkpvGVaEpMyMCIiIpJwlIEREZGkMlkDO0ksysCIiEjSCDew6/J2UbqzlC5vF4eOHMLn88V6ajJDCmBERCRpqIHd0qEARkREkoYa2C0dCmBERCRpqIHd0qEARkREkoYa2C0dCmBERCRpqIHd0qFt1CIiklTUwG5pUAZGREREEo4yMCIikvTU3C7xKAMjIiJJTc3tEpMCGBERSWpqbpeYFMCIiEhSU3O7xKQaGBERSWhzrV8JN7dzF7hHx9TcLv4pAyMiIglrPupX1NwuMSmAERGRhDUf9StqbpeYtIQkIiIJy9/ip3RT6ZixnPwc/Jf8M7qOmtslHmVgREQkYelwxuSlAEZERBKW6leSl5aQREQkYYXrV6pOVuG/5Ke4oJj9+/bPaDlIXXgTk7HWxnoOU6qsrLTV1dWxnoaIiCxB4V1Mno0ecvJz6GztpO1Km4p4F5Ax5qy1tnKu11EGRkREZi3RsxeRu5iA0a9VJ6sS6nEkI9XAiIjIrCyFM4TUhTdxKQMjIiKzkojZi/EZo1Sbqi68CUoZGBERmZVEy15MlDHyt/u5dvKadjElIAUwIiIyK4nWg2Wirr3lj5dTlFWkLrwJSEtIIiIyK7u37+bQkUMAY3bw7N+3P8Yzm9hkXXu7nF0ceOZAjGYls6UMjIiIzMr4M4R6zvfgGnJx+KeHOXj4YNwV8yZaxkimpgBGRERmraKiggPPHODTT3+avrQ+XFtccbsjSV17lxYFMCIiMmfzcSr0QtOp00uLamBERGTO5utU6IWmU6eXDgUwIiIyZynBFF7511cYCA7gdrvZsHkD6a501ZfIgol6CckY4zTGvG2MORL6b48x5lVjjC/0NS/itn9tjKk1xlw1xjwZMf6gMeZi6GffNMaY+X04IiKy2Hw+Hw3dDbSntpO+JZ2e5T0c+8Uxan9Zq/oSWTAzqYH5M+BKxH9/Hjhmra0AjoX+G2PMJuDjwL3AU8C3jTHO0H0OAs8BFaF/T81p9iIiEnNVJ6so217Grg/uwnXHxcDtAfKW51GSV6LlGlkwUS0hGWNKgd8Cvgb8eWj4aeCJ0PeHgdeAvwqN/8ha2w9cN8bUAg8ZY24AOdbaU6Fr/gD4CPDyfDwQERGJjXD9i8PhwFvoBWB4eBj/6/FV/yJLS7QZmL8H/hIYjhjzWmsbAEJfC0PjJcCtiNvVhcZKQt+PH7+LMeY5Y0y1Maa6paUlyimKiEgsqL+KxMK0AYwxZh/QbK09G+U1J6prsVOM3z1o7XestZXW2sqCgoIof62IiMSC+qtILESzhLQD+B1jzIeBDCDHGPM/gCZjTJG1tsEYUwQ0h25fB6yIuH8pUB8aL51gXEREEli4v0rVySr8l/wUFxSzf9/+hKt/GX9S9e7tuxPuMSQTY+2ESZCJb2zME8DnrLX7jDF/B7Raa79ujPk84LHW/qUx5l7gBeAhoJiRAt8Ka23QGPNr4E+AM8DPgG9Za3821e+srKy01dXVs3lsIiIiUQmfVO3Z6BlzrpMa3c0/Y8xZa23lXK8zlz4wXwdeNMY8C9wEPgZgrb1sjHkReAcYAj5rrQ2G7nMA+D7gYqR4VwW8IiISc5GdhIHRr1UnqxTAxKkZBTDW2tcY2W2EtbYV2DXJ7b7GyI6l8ePVwOaZTlJERGQhJUonYfnf1IlXRESWpJnUtIR3UoUzL6CdVPFOhzmKiMiSE65p6fJ2RXU6tnZSJR4FMCIisuTM9HRsnVSdeLSEJCIiS85salp0UnViUQZGRESWHHUHXvoUwIiIyJKjmpalT0tIIiIyI4nQsbaiooJdm3fx3R9/l1vNt1hRuILPfPQzcTdPmT1lYEREJGoz3d0TKz6fj2OXjnH/0/fzHz//H7n/6fs5dulY3M1TZk8BjIiIRG2mu3tiJVHmKbOnJSQREYlaonSsncs8E2GJTJSBERGRGUiU3T2znWeiLJGJAhgREZmBRNndM9t5aukpcWgJSUREohbuWFt1sgr/JT/FBcXs37d/UZdYolnime08E2WJTBTAiIjIDMWyY214icez0UPpplI6Wzs5dOTQhG3/ZzNPHeqYOLSEJCIiCWOhl3gSZYlMFMCIiEgC8bf4ycnPGTOWk59DfUv9vFxfhzomDi0hiYhIwliMJR4d6pgYlIEREZGEoSUeCVMAIyIiCUNLPBKmJSQREUkoWuIRUAAjIiKTUEt9iWdaQhIRkbuopb7EOwUwIiJyF7XUl3inAEZERO6y0P1WROZKAYyIiNwlUU6dluSlAEZERO6ifisS7xTAiIjIXdRvReKdtlGLiMiE1G9F4pkyMCIiIpJwlIERERFAjesksSgDIyIialwnCUcBjIiIqHGdJBwtIYmICP4WP6WbSseM5eTn4L/kB7S8JPFHGRgREZmycZ2WlyQeKYAREZEpG9dpeUnikQIYERGZsnGdzkWSeKQaGBERASZvXBdeXnIXuEfHdC6SxJoCGBERASYv1N29fTeHjhwCRjIvna2dtF1pY/++/TGesSQzLSGJiMiUhbo6F0nikTIwIiIyplAXGP1adbJqdGkpngMWbfNOPsrAiIhIQhfqapt3clIAIyIiU/aBiXfa5p2cFMCIiMiUfWDiXSJnj2T2FMCIiEhCF+omcvZIZk9FvCIiAkzeBybeaZt3clIGRkREEloiZ49k9pSBERFZ4pJhi3GiZo9k9hTAiIgsYeEtxp6NHko3ldLZ2smhI4cSIkORDIGXzJ6WkERElrBE3WKs3i4yHQUwIiJLWKJuMU7UwEsWj5aQRESWsIU4SXoxlnb8LX5KN5WOGcvJz8F/yT+vv0cSlzIwIiJL2Hw3qFuspR31dpHpKIAREVnC5nuL8WIt7SRyZ2BZHFpCEhFZ4uZzi/FiLe2EA6+qk1X4L/kpLihm/7792oUkoxTAiIhI1BaipmYy6u0iU9ESkoiIRE1LOxIvFMCIiEjU1LZf4oWWkEREZEa0tCPxQBkYERERSTgKYERERCThTBvAGGMyjDFvGmPOG2MuG2P+NjTuMca8aozxhb7mRdznr40xtcaYq8aYJyPGHzTGXAz97JvGGLMwD0tERESWsmgyMP3Ab1hr7wO2AU8ZYx4BPg8cs9ZWAMdC/40xZhPwceBe4Cng28YYZ+haB4HngIrQv6fm8bGIiIhIkpg2gLEj7oT+MzX0zwJPA4dD44eBj4S+fxr4kbW231p7HagFHjLGFAE51tpT1loL/CDiPiIiIiJRi2oXUiiDchYoB/4fa+0ZY4zXWtsAYK1tMMYUhm5eApyOuHtdaGww9P348Yl+33OMZGpYuXJl9I9GREQSymIcDClLU1RFvNbaoLV2G1DKSDZl8xQ3n6iuxU4xPtHv+461ttJaW1lQUBDNFEVEJMEs1sGQsjTNqA+MtTZgjHmNkdqVJmNMUSj7UgQ0h25WB6yIuFspUB8aL51gXEREklDkwZDA6Neqk1VTZmGUtRGIbhdSgTHGHfreBewGaoCXgGdCN3sG+Gno+5eAjxtj0o0xaxgp1n0ztNzUZYx5JLT76NMR9xERkSTjb/GTk58zZiwnP4f6lsk/2yprI2HRZGCKgMOhOhgH8KK19ogx5hTwojHmWeAm8DEAa+1lY8yLwDvAEPBZa20wdK0DwPcBF/By6J+IiCShmRwMGc66vPTqS2RszOAB+wAOhyPqrI0sPdMGMNbaC8D9E4y3Arsmuc/XgK9NMF4NTFU/IyIicWKhl2p2b9/NoSOHgJHMS2drJ21X2ti/b/9d8zh05BCejR5MocGUGE5cOMGOrTvwFnrJyc/Bf8k/b/OSxKCzkEREBBgbsKQEU2jobqBsexmlm0rpbO3k0JFD83pwY/hgyKqTVfgv+SkuKGb/vv13XT+yViYvL4/eoV6yirKouVaDt9A7adZGljYFMCIiMibLUbqplFf+9RXaU9sptaULulQTzcGQ/hY/pZtG9oBs2LyBE6dP4Cp30d7RTqAlMGHWRpY+BTAiInLXjqCB4ACeTZ7RLAdw11LNYu0GiqyV8a70soMdvHXqLWiA7NLsCbM2svTpMEcREblrR5Db7cYOWgJdgdGxyKWaxdwNtHv7btqutBFoCTA8PEy6K531Rev5b1/6bxx45oCClySlAEZEREazHGEbNm+g/UI7acNpDA8Pjy7V7N6+GxibsQkvMXk2eqg6WTXvcwvXymQ3ZeN/3U92U/a81uJIYtISkoiI3LUjKN2VzrrsdZSkleB//e4C28i6lLCF3A0UTa2MJBcFMCIiCWo+a1Am2hH0F3/4F5NebyY9XEQWggIYEZEENH7X0Hxsc54qyzE+WCovLufYpWPA1D1cRBaKamBERBLQYtagTFSwe+zSMXZt3qW6FIkZZWBERBLQYtagTHboYm19LQeeOTDvv08kGsrAiIgkoPG7hmDhalBmc+iiyEJTACMikoDG90YZv815Pi1msCQSLQUwIiIJaDF7oyxmsCQSLWOtjfUcplRZWWmrq6tjPQ0RkaQW3oVU31JPcUHxgh0bIEufMeastbZyrtdREa+IiExLjeQk3iiAERGRGVusgxxFJqMaGBERmZHFPMhRZDIKYEREZEYWs4meyGQUwIiIyIyoL4zEAwUwIiIyI+oLI/FARbwiIklupgW5u7fv5tCRQ4AOcpTYUQZGRCSJzaYgdzGb6IlMRhkYEZEkNtlBjVUnq6YMSNQXRmJNGRgRkSSmglxJVApgRESSmApyJVEpgBERSWI6qFESlQIYEZEkpoJcSVQq4hURSXJTFeS++uqrfPfH3+VW8y1WFK7gMx/9DHv27FnkGYrcTQGMiIhM6NVXX+WL3/sinoc9rPyNlQTqA3zxe18EUBAjMacARkQkSU3XwO67P/4unoc9pLpTufb+Nbr7uqEE/v77f68ARmJONTAiIkkomgZ2t5pv4ch2UFtXy2DGIFneLFJKUzh/7XzUJ0/7fD4OHj7IF57/AgcPH9SJ1TJvFMCIiCShaE6UXlG4ghtXbpCem05qRioYGOoYIt+bH9XJ07Pp8isSLQUwIiJJKJoGdp/56Gdo/3U7A60D2CFLd303PWd72Ll7Z1SN7qIJkkRmSwGMiEgSiqaB3Z49e/ho5UdxvuWk7d/acF128dt7f5vSitKoGt2py68sJBXxiogkoWhPlP7TP/pTso5k4dnomfHJ0+EgKXy+EqjLr8wfZWBERJJQtA3s5tLoTl1+ZSEZa22s5zClyspKW11dHetpiIjILIS3ate31FNcUHzXVm1JPsaYs9bayrleR0tIIiKyYKbq8isyFwpgREQEmL6xnUg8UQ2MiIioZ4skHGVgRERkTM8WYPTrCz95gcLCQmVlJO4oAyMiIhP2bOkN9nL0zaPKykhcUgZGREQm7Nly7tw5CtcUjsnKtNxu4Uvf+BJlZWWkBFMwDsOgGVR2RhadMjAiIjJhz5ami01se3jb6G2ampu4cOsCzbaZ1DWpvFb3GscDx0ndmKrsjCw6ZWBERJLMZLuNnt337Mj4JT/FBcXsvX8vrizX6P1qrtXgzHSyrGQZ777zLp77PJg0w7vX32XnozuBkVoaZWFkMSiAERGJIwu9lTm828iz0UPpplI6Wzs5dOTQaHfdyN8Vvi2MHDfQ4G8gLZjGhkc3cPqN07g3usFAwB8YvY3/kn/e5ioyFS0hiYjEicXYyjyTE6LHHyPgDXjZsn4L3pVe3G43vYFe+rr7cGeP1MjonCNZTMrAiIjEicm2Ms/nsoy/xU/pptIxY1NlTiKzMuEAK9ASYN2mdRx/7TjkwIe2f2j0nKNoDnkUmQ8KYERE4sRMg4uZCC9NnT1/lsvNl3ng0QfwrvQC0WdOIutkulq6eKL0CYzDMHRliOyCbPbv26/6F1k0CmBEROLERFuZ52NZJrLu5ZGPP8Lxk8c59otjfOiJD+HKco1mTqaqvxn/s08//WkFKxJTqoEREYkTE21lbrvSxu7tu+d03cilqaLlRez64C7yludx+t9Ok92UzbP7ngWYtP5GxwxIPFIGRkQkTky0lXk+lmXGL015C708ufdJ/Ol+DjxzAICDhw9OWn8DLHhtzmLSoZVLgwIYEZE4Mn4r83yIZmlqqvobi12w2pzFNt02ckkcWkISEVniolmaCgc5kcJBzlQ/SzQz2UYu8U0BjIjIEhfZz+Xijy/y9k/fpqOxg6qTVaN1LFMFOQtVmxMLEx1amZOfQ31LfYxmJLOlJSQRkSQQXh55v+19Vu1cRU5+zl3LJ1PV3yxEbU4sLNROL1l8CmBERJLEdI3ypqq/WYjanFjYvX33mOMROls71YAvQWkJSUQkSWj55O7jEcLbyJdCcJZslIEREUkSWj4ZsVSySclOGRgRkSSxlIpxRaYNYIwxK4wxx40xV4wxl40xfxYa9xhjXjXG+EJf8yLu89fGmFpjzFVjzJMR4w8aYy6GfvZNY4xZmIclIiLjaflElhJjrZ36BsYUAUXW2reMMdnAWeAjwH8C2qy1XzfGfB7Is9b+lTFmE/DPwENAMVAFrLPWBo0xbwJ/BpwGfgZ801r78lS/v7Ky0lZXV8/pQYqIyFgzOfdoKXSqXYqPKVEZY85aayvnep1pMzDW2gZr7Vuh77uAK0AJ8DRwOHSzw4wENYTGf2St7bfWXgdqgYdCgVCOtfaUHYmafhBxHxERWSRTnW20FM89WoqPSWZYxGuMWQ3cD5wBvNbaBhgJcowxhaGblTCSYQmrC40Nhr4fPz7R73kOeA5g5cqVM5miiIhMY6rt1LC0zj2C6bePS2KKOoAxxtwD/E/gP1trO6coX5noB3aK8bsHrf0O8B0YWUKKdo4iIsliLksiyXLuUdhUj1cSV1QBjDEmlZHg5YfW2h+HhpuMMUWh7EsR0BwarwNWRNy9FKgPjZdOMC4iItOIDFhSgik0dDdQtr1sVgcSTredeqlttdb28aVp2gAmtFPoEHDFWvuNiB+9BDwDfD309acR4y8YY77BSBFvBfBmqIi3yxjzCCNLUJ8GvjVvj0REZIkaf4LyK//6Cu2p7ZTa0tEDCWHiJZFw4HPhnQsEOgPkufPwerz4r/opf7x8wm60S61TrbrvLk3RZGB2AH8AXDTGnAuN/RdGApcXjTHPAjeBjwFYay8bY14E3gGGgM9aa4Oh+x0Avg+4gJdD/0REZArjazgGggN4NnmouVaDt9ALTLwkEg58gjlBLrVdom2gjd6GXsqKy/A4PPSc76HL2bVkzz0Km+6cJ0lM0wYw1to3mLh+BWDXJPf5GvC1Ccargc0zmaCISLIbX8PhdrvpGewh0BUYHZtoSSQc+Pzq5V/RNNhEysoUBu4McKHlArlduRRmFPKt5+9OhC/FTrVL8TElO3XiFRGJc+EajrANmzfQfqGdtOG0KTvqhs8+uv7edZylTgLdAUyhwVnhJO2BNP79zL9rK7EkLAUwIiJxbvwRAOmudNZlr2Nb2rYpO+qOBj4Gurq6cBY4MamG9LR0UvNSSc1PHd06LZJodJijiEicm6iG4y/+8C+mXRIJF68WLS+i3l9PRmEG9MA9WffQ7e+morwiLk+iVtdciYYCGBGRBDCbGo5w4JMxkEHNOzUMXR8iPT+dzsZOTL2hf00/KXbs20Csg4fxO65mukVckoeWkERElrCKigr+5q/+hu9++buUB8qxlyzLhpexvnI9Q0ND+Nv9o3Uw8dBy/4WfvMDVnqu89vZr/OrMr+i3/Xg2erTUJXdRACMikgT27NnDrg/s4oF7H6AkqwSv9bLrN3ZR/nj5aHAQuV073F9mMYMHn8/HK2++gikx5K3Loy+njxMXTtAb7I3LpS6JLQUwIiJJwOfzcebSGfpy+3CvcbOhcgPelV5y8nNGg4PwrqVIkT9faFUnq/Cu8cIQGGNw3eMiqyiLc+fOqWuu3EU1MCIiS1x4aSijKAMKoS99JLOxY+sO0k36aHAQ65b7/hY/2x7exqk3T0EFuNwuhvuHabrYxO7/sHv6C4TEuo5HFocyMCIiccDn83Hw8EG+8PwXOHj44LzWnYSXhh549AF6a3uxA5ZMbyZvvfXWmP4x47drT9ZfZqGUFJTgynKx45EduBpcBE4FwAd7798bdQASD3U8sjgUwIiIxNhCv+mGl4a8K72jwUHfhT76rvSN2d0T3rWU3ZQ9ZX+ZhRIOoNJd6Tz21GPs3LOT9UXr+dRHPxX1NWJdxyOLR0tIIiIxNv6so6kOZ5yNyKUh70ov3pVeAi0Bspuy77p+rFvuZwxkcPx/HMcYw8NbH+bZj8wsgBp/7AJMfE6UJD5lYEREYmyhi2djvTQUjXAWKvO+TJ7+s6d54lNP0JvSO+PrjD92ARa3jkcWjwIYEZEYCde9nD13lleOvkJTc9Poz+bzTTfWS0PRmK+ln0QI1mR+aAlJRCQGIjvOPrL/EY6/dpxjbxzjQ9s/hMvpou1KG/v37Z+33xfrpaHpzNfSz0THLuzftz+uH7vMjgIYEZEYiMw4uAvc7PqNXbx16i3O/OgMv737t5PuTXc+t3DHe7Am80NLSCIiMTC+7sW70suTH3uSB+97kAPPHEi6N2At/chMKYAREYkBFZuOlQh1OhJftIQkIhIDu7fv5tCRQ8BIrUdna+e8170kmqmWftRdV8Yz1tpYz2FKlZWVtrq6OtbTEBGZd+E35fqWeooLivWmzMSBCjBa8BwZ7ClDk5iMMWettZVzvo4CGBGRpWmqrEW8ZDQi55ESTKGhu4Gy7WVjApWehh5ucYuB4ABut5sNmzeQ7konuymbA88cWPQ5y9zMVwCjGhgRkSVoquMJ4uW8oPHzON96nqvBq/TbfhwOB/29/VS/U80Pjv2A62nXcTi0mm4AACAASURBVG520lvUy4nTJ+jt7l20U7IlPqkGRkRkCZrqeAJgQY8umE446/LSqy+RsTGDB+wDOBwOBoIDeDZ5qLlWA31w4vQJWmghfVM6QzlDXKu/RnlpOZkVmZw7c4699+5d8LlK/FIGRkRkCZrqeIKFPrpgKpFZF1NoMCWGExdO0NTchNvtprOuk/MnzvMv3/sXGtsauX39Ns5eJ42vNdL2ThvvXX4PUqD5erO2WCc5ZWBERJag6RrDzVfTuJmKzAzl5eXRO9RLVlEWNddqcA45OfvqWZyrnKR6UqEXbt++TWZeJvdU3MPQwBB15+rwDnrZ+9DeOWWL4qUGSGZPAYyIyDTGv9mVF5dTW18b129+023TjtUW7sgjAzZs3sCJ0ydwlbu4de0WDVcbyNqWhafIQ72/no53OnA95IJhsB4LrZBfno+z1ckn/89PznoOkcc4lG4qpbO1k0NHDmlXU4LREpKIyBTGF5q+53yPL37vi7w39F5MC2CnM1VjuFg2jYts4Odd6WXHIzvAB63nWnGkOXjgAw+w9d6tFJcWk5qZisPtID0tHeegk6GhITJsBuUl5XOa63wdHCmxpQyMiMgUIt/smpqbeO2t12jPaue1o6+R48nBu9I7eruFDgBmuuwxVWO4WJ0XND4zlO5KZ33ReooeKaI9o53+YD8AwwyTtzyPjqYOMl2ZFLuLKSwvpOdqD5s3bJ7THObr4EiJLWVgRESmEC54bWpu4sSFE3RldpH3YB5dKV2cOH2CpptNi1IAGy9bn+dqsuzPlg1bKC0tpcfXQ09bD5lpmaRmppJ+I50t5VsoX11OsCNISnPKnIt3dYzD0qAMjIjIFMJvdjXXasgqyiLXmUtPaw85BTlkVmRSc6mGdFf6XW9+810kOtW26ESr25gs+3PoyCG2rNtCXV0dzvecmBuGDz34IVK7U2msaiSlJ4XP/cHn5vx4dYzD0qAMjIjIFMKnJDf4G0h3pZPan0rDGw20dLRw89ZN3qt5765TkxciWxLLrc+LIZyZWZuylvKscp7a/BT7PrCP7uZuOmo7eLzscf7hi//Anj175u136eDIxKYMjIjIFMJvdu9/432uH7lOx1AH6x9ez2DWIG11baQ2pbJr864xb34LkS2Zblt0IvP5fLzwkxc4feE0WKgorqAvpY/y3eXcm3/vaIZkPsWqBkjmjwIYEZFpVFRU8JU//wp//PU/Ju+BPPJK8ugN9OK57WHLJ7Zw4q0TY7ZVX3jnAvdtum/MNeZaJLpUlz18Ph/P/9PzXA1exbPLgx20/Pzoz3FnuFnRu2J0lxCMDQDVx0W0hCQiEoWKigrWLltLbiCXwKkArgYXOx7ZwT3uezj69tExy0Xv3X6Paxeujbn/XLMlS2nZw+fzcfDwQQ781QE+8cef4KjvKB0ZHQRNkKz8LMwaQ39GPzWXakbvE7lctlQKmmVulIEREYnS1k1b6fJ2jVnGeflfXsa7xTtmuWjrh7Zy4egFCkoK5jVbshSWPcLBRzAnyHV7nUBOgE5XJxmuDGrraikvLSd3WS6dDZ0EAoHR+0UGgEupoFlmTxkYEZEohQt6Ay0BhoeHCbQEaLrexLZt28bcrmx9GeUl5UsiWzLfwsFHfX09mesy8ZR4SE9J507nHdJz02lsaSQvLY9gd5A0Z9ro8xxZKL3UC5olOsrAiIhEKbyMU3WyCv8lP8UFxTz50JO4nK4xt+ts7WTzhs0ceOZAjGYav8JN5AKBAO6NbpaXL6ftdBvN55uxOZbell48Dg8Vngruy78P/+sjz/P+fftHA8ClXNAs0VMAIyIyA+OXccJLIrC0imsXymjw4XbTG+glpzgHb5GXjpsd9KX2kZaXxuqVq1mRvoJPffRTd2WtfD4fTY1NHH35KN4tXrZt24bL6dJznoSMtTbWc5hSZWWlra6ujvU0REQmFd4RU99ST3FBsXbETCGyBubi1Ys4ShxcP32dgi0FZDoz2bF1B95CL4GWANlN2WOyWJGHMPZ293LuzDmarzez96G9fPIjn9RzniCMMWettZVzvY4yMCIic7QUimsXS+QyXLfp5v0z79N9rRtHnoPcFbmjt5to23lk8a67wE3R6qLRQEfPf/JRACMiMgH1GVk44eexqbGJU1dPEXQH6UntoW6ojsbjjSzPXU73nW68AS8+n2/09jqEUSJpF5KIyDjqM7Kwws/vifdP0L2um8z7Mul6v4u2jjZq79Ry5eYV0oJplFaWjj7vPp+Pa9eu8eKPX+T1U6/T1NwEqHg3mSkDIyIyjvqMLKzw89twuoGsDVmkZaaRkpZCc3Uzzkwn3be7Wf/Meup762lobuDi31ykZFUJpZWltF9tpz3Yzhvn3mDriq04W5wq3k1SysCIiIyjPiMLK/z8WoeF/pGxnFU5OL1OSh8tJd2dTtWFKs42nqXL3cU7re/wbte75Hhy2PHoDvI68xh6f4i6E3Xqr5PElIERERlHfUYWVvj5XVuxlndr3oWN0D/Uz2DXIO8df4/gYJDU3FQ8Kz30NPdwx94hdWUqNZdq2PnhnXhXehkeHsb/ul/BSxJTACMiCW++C26X6sGJ8SL8/G5Yt4H27nYazzZy+8ZtcnNyuX37Nv0r+rl+9TpNvibybB7LNiyjpa2FtIG00WsooBQtIYlIQluIgtuldHBiPAo/v2uDa7kv7T4y6jNwZ7khFQZcAzj7nTg7nQzeGqSjs4Pc3Fzab7ZPerSAJCdlYEQkoc214Hay7I16uyys8PPr8/l4u/Zt1v3WOt46+xauFBfB4SDGaXC85yBzcybvn3+fMlfZpEcLSHJSACMiCW0uvUEiO7uWbiqls7WTQ0cOKduyiKpOVuFd44Uh6OnpIbsim66OLoZvD5NqUxlqHWLgvQG+/I0vs2fPnlhPV+KIAhgRSWhzKbjVdunY87f42fbwNk69eYq04TSG+4fJcmbRdaMLz9qRk6pXbV3F6tWrOXj4oBoLyijVwIhIQtu9fTdtV9oItARmXB+h7dKxV1JQgivLxY5HdlCRUkHPz3sYvjLMqg2rqNhUwT2t9/B7u39PjQXlLgpgRCShzaXgNpy9iaTdLYsrHICmu9L5/ed+n9/93d/F0+Ehw5dBbk0uX/3Dr9Ln6BvNlDkcDtwFbjwbPVSdrIr19CWGtIQkIglvtgW32i4de5GHO/ov+aksqOTzBz8/5vV8/fnXdQaS3EUBjIgktLn0gBn/5qndLbExXQCqxoIyEQUwIrJo5rvh3HzsItJ26finTJlMxFhrYz2HKVVWVtrq6upYT0NE5igy2Ih8E5rLluWDhw/S5e0a88k80BIguymbA88cmK+pSxTmOzid7Pr1LfUUFxRrF1ICM8actdZWzvU6ysCIyKJYiC3Lc+kBI/NnMfrpzFembKEDLVk82oUkIotiIbYsx8MuIp/Px8HDB/nC81/g4OGDSbm1NzI4jeddQgtx7ITEjjIwIrIoJivEdAads25QNpvaiPn8BK5OviMSJROmxoVLizIwIrIoJmo4V/vLWhq6G2b9iXimPWCi+QQ+k4xKomQeFlo8ZMKiocaFS8u0GRhjzHeBfUCztXZzaMwD/AuwGrgB/AdrbXvoZ38NPAsEgT+11r4SGn8Q+D7gAn4G/JmN9wpiEZk3E21ZLskrwbXFNaNPxBNlUKIt2J3uE/hMMyqJknlYaPG4S2iivxNtx15aosnAfB94atzY54Fj1toK4FjovzHGbAI+Dtwbus+3jTHO0H0OAs8BFaF/468pIktcRUUFB545wFc/91UOPHOAQTM4o0/Ec61hmO4T+EwzKomSeVhoc+mGvBAm+zspLy6f9bETEn+mzcBYa39pjFk9bvhp4InQ94eB14C/Co3/yFrbD1w3xtQCDxljbgA51tpTAMaYHwAfAV6e8yMQkYQ100/Ec61hmO73zTSjEo+Zh1iJp346k/2d1NbXqnHhEjLbIl6vtbYBwFrbYIwpDI2XAKcjblcXGhsMfT9+XESS2EwDgLku2Uz3+2YaUKmTb3ya6u8kngItmZv53oVkJhizU4xPfBFjnmNkuYmVK1fOz8xEJO7MNACYaw3DdL9vNhmVZH1DjGY310L0XInmmqp1SQ5RdeINLSEdiSjivQo8Ecq+FAGvWWvXhwp4sdb+X6HbvQL8DSOFvsettRtC458I3f+Ppvvd6sQrImEL0c13ot+hjq9TG/86XLt6jQvHL7B22Vq2bto6WlMy369VtK//YvydyOzNVyfe2QYwfwe0Wmu/boz5POCx1v6lMeZe4AXgIaCYkQLfCmtt0Bjza+BPgDOM7EL6lrX2Z9P9bgUwIhJJAUbsRR7h0NTcxIkLJ3BkOMgN5HL/w/fTdqUN15BrzA4zmPsxDzM5OkJ/J/Fr0Y4SMMb8MyMFu8uMMXXAl4GvAy8aY54FbgIfA7DWXjbGvAi8AwwBn7XWBkOXOsD/3kb9MirgFZFZSNYlm3gSWWNSc62GrKIsMjIzCNwMjAYXx394nKefeHrM/ea6xXwmNVD6O1n6otmF9IlJfrRrktt/DfjaBOPVwOYZzU5EROJOSUEJ1y5co76+njNnz5C3Kg93oZtC98h+jpz8HLDMex2KalskkjrxiojIjJQXl/OrY7+iPaedvEfz6Mzu5Nqb11jmWQaMBBUPb3l43nuuTNTNWX1ckpfOQhKRuDd+50l5cTm19bU6UThGautreezDj1EfqKenq4ee9h68D3ppvt1MSUvJSMHsR58FmNct5tq2LpGiKuKNJRXxiiS3iXa8/Opnv+KxXY9RtrVMO0xi4AvPf4HSnaU4HCNJ/KbmJq74rnDr9Vt88nc+qYBSprRoRbwiItFYiJ4fcHdX1fpAPZ6HPdTX11OxrUInCsfA+FoUb6GXdJPOY7mPzXqHkchMKYARkTmb7BDEXZt3ceKtE5y5eAYMPLL1ET75kU/OKNAYv/Okvasdd7mbwM3A6FgyHqAYSzpCQeKBinhFZM4mOgQxWBDkb7/9t7xW9xoZOzNw7XJxPHCc5//p+agPX4S7D0zMy84jUB/A7dZOlFiJt8MbJTkpAyMiczZRfw5/m5+W3hbuve9eMj2ZAJj1huZbzTNa7hn/ab/YXcy1n13j3l33Mjw8rE//MaI+KxJrysCIyJyNz5IANDY0kpKagsvtGh3LyMqgn37qW+qjvvb4T/trg2v56h9+lbUpa/XpXySJKQMjInMWzpK03G7B3+ansaGRxrcbcee76Q30jmZg+rr7SCd9xss9E33a38OeeZu/iCQeBTAiMmcVFRXs2ryL5//peYYyh/AWeVnz+BqqT1XjP+2n+OFiTKqhzdfGeud6NR5LYLE6YVpkPPWBEZF5MdFBe75zPt459g7DjmGMMTy89eEZ70KS+LEQpzzr5Ojkoz4wIhJXJirkLdtaRkZ7Bl/93FdjNCuZT+N78sxHD56FuKYkBwUwIjIvJjtoL8WmcPDwQS0PLAEzOQ0aolsamuk1RcK0C0lE5kX4oD3fOR/HjxznX/7ff+F//eP/4vK1y3R5uyjdWUqXt4tDRw7NqA+MxI+JdptN1oMnvDQ03Ws/k2uKRFIAIyLzIlzIe+HkBZr7mvFu8pJRlkFzajP9vf2jDe48Gz1UnayK9XQlgs/n4+Dhg3zh+S9w8PDBSQPMiU6DvnbyGk2NTXfdd6LmhhO99jphWmZLAYyIzJva+lp2fWwXv/97v88TO54g1Z1K3tY8ai7VjN4mJz9nRn1gZGFFmymBu3vy9F7sxQ5ZMu/LvOu+/hY/Ofk5Y+4/0Wuvrr4yW6qBEZF5M76ewYmT6/XXufP2HciDDWUbSDcz7wMjC2emRbSRPXkOHj6Ia4trwvtOVhM10Wuvrr4yG8rAiMi8iaxnaGpuItAdoLOhk6yCLHrv6eXYG8e4dvLajJcHol3ikJmLNlMy0/tqaUgWmgIYEZk3kW9aV3xXyC7IpsSUsDJzJf0X+8kbzKMoq2hGn7ZnssQhMzeXItqp7qulIVloWkISkXkTftOqOlnFzddvsmLrCh7d+yjelV4AhoeH8b8+s+2x6hOysMYfljmTwzGnu6+WhmQhKYARkXkV+aY1vjPvbLbHqk/IwooMOv2X/BQXFLN/3/6oAo+53FdkrhTAiMiCmMsn+0jRFoPqPJ3Zm0umRFkWiRXVwIjIgpivGohoikFVJ7MwVDwt8UyHOYpI3AtnV+pb6ikuKL4ruzLRQZKBlgDZTdkceOZALKac8HTIoiwUHeYoIkljumWKZK6TWailMxVPS7zTEpKIJLxkPU9nIZfO5tIfRmQxKAMjIglvvgqGE818ZknGZ3JSgilRd9IViQUFMCKS8JJ1O+9Mls4iA5RUm4odtgw5hygpKKG8uJxjl47h2eihdFMpna2dNFxrwP7SUv54eVIFhZI4FMCIyJKQjNt5Z7LF/Pl/ep7m9GZa77TS2NRIniOPD//mh3mv9z2+9X9/i5y8HMrulLFh8wa8K72UbS+j92LvyC6yJAoKJXEogBERSVBTLZ1FZlzefvttWnJaWPHoCnqv95K2IY321nZeO/Ya6avSGVg/QJAgvUW9nDh9gh3soKC0gC7TpV1cErcUwIgkMTV/S2yRS2cXjl+gvbOdPHceL/zkBfztfsofL6d0Uyn/eulfsf2W5Z3L6evtI6soi9SMVK4eucqjjzyKx3jovNRJpicTKqDmUg3pLp0aLvFNAYxIkors8xGuezh05JD6fMTYTIPK8M/eb3uf1R9aTU5+Dq8cfYX2rnZW9K7A4XCQmpkKXmisbSTTk8lA7wAMwKAdJCMrg7y0PO4E79B7p5eBngEuv3GZ6xeu8+RDT/Lqq69SW1+rIFfijgIYkSSlPh/x5dVXX+Xvv/f3nK87T/6GfO679z4u113mn774T+y9fy+f+uinJn1dxr+W/Y5+Utem8tJLL1GwrgCDobOpk6GOIdZtWkfNxRqG2oYoLC2kva6dnms9ZGdn88sXf0lXoIvcZbk8te8pbnXc4rmvP4e30MuaDWvoz+tXkCtxQwGMSJJK5uZv8SKcbfn3n/87p26cYjhnmKxHs+hI6+ClMy+xpnANw9nD/PPxf+bU5VN87g8+x549e+66zvjX0okTX6sPZ9DJunXr6Ezp5OavbnLn+h2cXU6WZS3D0etgVe4qbv7qJoGsAH3L+kjJTOGewntwuV2cuHiCwJ0Ag1sGeff6u/hu+UirTuOD931QQa7EBTWyE1mipjvHJlmbv8WL8BLee873qPZXYx42DKUM0eXo4lbgFh1DHVw4c4G27DZS70vF+aCT53/0/IRN6u56LYcheDtIRnoGDfUN+Gp92B5LWlYa2cXZZGdm8+XPfpkffvuH7PrALhwBB85GJ6bdULyhGM9aD413GrkdvE17WjuDZpDszdkM3zvML379C94488YiPlMiE1MAI7IERdOhNZpDEmXhVJ2sIlgQ5LW3XqOjq4PhnGEGGKCzqZPhzGEYhOHVwzQGGulu7yavNI+hwiGqTlbdda3xr2X3nW6KKSbP5nHhpxdw3HGw6rFV5Jbl4s51s3X7VmrrawEYcg6Rm59L9rJsANovtDMUGGJgcIC+YB+23zKcPkygI8BQ5hBBE+TqtauL+lyJTEQBjMgSFFkT4XA4cBe48Wz0jHnzm6/TomV2LtZc5PS7p7k5eBPugTsNdxhIH4AWYAi4A6QDQWi73UZfdx/eIu+ErfzHv5aumy4yXBnUUcfAqgGCxUECnQHSMtPIrMikrq5u9DopwRQaWxvpze9l2Z5lDGQO0HC+AbrBdloGrwziKHDgTHcy2D7IYNcgvX29i/lUiUxINTAiS1C09S3J2PwtXrx/8338BX7SctPIXJ9Jx/kOWAGUgHnHYN+zmCyDyTP01Pdw7ifnWLt8LetWrZvweuHX0ufz0dTWxPnm87R2t8Ia6LrdRY+/hzsZd7BXLffU38Pjex8HwDgM7tVuAp0BsnKy8Kzy0NzVTNrVNFJ7UzH3GVKdqQxeGcQ0GHJX5+K67VrEZ0pkYgpgRJagaDu0xrN47VET7bymu11ndycp6SlkeDIY8g7hNE6CbwXhHnDmOHFscTDQNcBg5yCOEge5W3IZHBykobsBn8835Y6k8sfLaTjZQP2Zeu503aF3sJehlCGGsoa4evkqrlsuMnZnADBoBvmtvb9F9blqrr97Hadx8ujmR1m1ehU33rvBmRtnMD2G7IJs0jakEXw/OGkQJbKYFMCIxIn5fMNO9MMN47VHTbTzmup2N27c4Ls//i6XfJdI9aaS15NHjjOHgbQBetb00N/Rj+s+F325ffAGkAoup4vr71xn3fJ1+LJ8fOkbX+IzH/3MhP1Zwtm3oCvItn3bOF11mpTcFAZcAziyHNjrlmHXMF/8hy9y8/ZNUoZTcDld/PZTvz06/0BLgN6LvbQF2ih2FNPR3AFd4C50s/XhrVSWVMbg2RcZy1hrYz2HKVVWVtrq6upYT0NkQUW+4UUGHHN5ww4HRPUt9RQXFE8YEM01aFqoLMnBwwfp8naNySAFWgJkN2XPqbX9XOcb7bwmu13dL+p4s+5NPA97uNVyC/8tP7bFcv+j9+N0OLl64ipZqVm8//77DAwOQB9493pZdu8y/Df9ZNzO4PHffJzrR65jBy2P7XqMsq1lY/5eXvjJC7zR9gaXb14m6AzScamDocwhCEJKZgqOexy4N7oJXgyyfft2CvsLsUMjhzb2Bns5d+4cN968QVZaFusfXo+/2Y+jxEGwJ8jWFVtxtjhjHkhKYjPGnLXWzjkKVgZGJA4sRFO56epb5prlWMgsyUL0qJnJfCcLdKKdV+Ttmm42UXOphlt1tzj/2nlyH8rFdlgKCwrpC/bR6ejkypErPLLzER5Z+Qj3lt3LPzb+I8t3Lqevs4+UshQCXQFcy1z0N/bT19HHkGOIgocLqK+vp2JbBf22n6s9V/nMX3yGtq426mwdzo1Oert7GRgcwJZZMr2ZBBuCmFzDcMYwNmjx+X105HaMFP2+lsHZa2cpXFNI8apibJnF3+dn/br13G64TaO/kbqbdXzlz7+i4EXiggIYkTgQi6Zycw2aFrKT70LU8NzVrba3n6sNV/nTr/wpv7P7d0aDlKkCnfHzarrZxFun3qKvoY+Dhw+OXiN8u/7efk6cPoEtsjQUNDCYP8hA/gCtfa3crLtJuiOdjKwMBgYG2Hvv3tH717xXQ8faDlKcKVx5+wqtGa0EM4I4Ghyc//F5BoODkAPdXd00NTdx4sIJMksyafhlA+2F7ZgMg+uOi35fPybbjGyF7homNSMVcqH9ajvcgYGuAfrS+nC2Ouno6WD7726nYmMFP33hp+SV5NHX08ftztvs/PBOhoeH8b/uV/AicUPbqEXiQCyayvlb/OTk54wZy8nPmXCb7kLcfyoL0aMmcr5NN5s4cfoEVED3sm6OXj7KM//lGf727/6WH/74h5NuQY+cV8ONBo794hjtqe088vFHxvTaCd/urVNvEVwe5PKNy7TdbMOZ7qSjtYNbV2/RY3oYSBkgw52BO989ZjnrMx/9DG1n2gh0BhjOGsbWWgaODDDUPsRtz22G7h3idvptWrpaePPUmwxnD3P92nUamxsZyBjAVe4ibW0auWtyWbZ9Gem30zFdhuG+Yfob+gneCsJySFubRmdKJw6vg1tdt7hy/QoAbreb3kAvGVkZBLoCQOIVgcvSpwBGJA7M5A17ug670Zpr0LSQQddC9KiJnG/NpRoyKzLpbu/mdsttzDrD8t9azrmBcxx9+yi93WP7nIQDs8h5nf630+Qtz2PXB3dRtLxoTKBTUVHBrs27uHjiIr8+8Ws6/Z1kF2SDB/pu9jFwZ4A7jXdoON/AtR9foyvQxTf/+zeBkde3tr6WNfes4f3/+T79Z/spGioiIyWDnJ055GzNYcgM0V7XTlZ5FjWXarhx4wY99T1k5GfgwMGdO3fo6ekhLTMNZ6qTLE8WZcEyMt/PJOVSCg4c5G3OI92Zjmk0pC5Pxb3Gja925G9pw+YN9Ph6aK9rJzcrV00OJS5pCUkkDoTfGKtOVuG/5Ke4oJj9+/ZPWJsxX3Unc92ptNA7naLpUTOTotzd23fzd9/7O1qGWrh47iL3PHgPXe92Uf5YOZmeTKy1BBwBvFu8nDtzjqLVRaP3jQzMwvPyt/gp3VmKw/G/PweGl/18Ph/HLh0ja0UWGZsz6BjooKW2BbJH+q7YGsvwPcMwAHjhdv9tvvOT73DhnQtkFGWw9UNb2fl/7KQpv4m0YBqp/akMZg8y7BhmsG6QlIEUKjZV0N/aT/u1drzZXso+UMaNrBv4b/npG+ijP68fj9tD+5l28ory+L1P/h6vv/E6g7cHqXmrBnvZ4nQ78W7wYrF487xce/UagZYABaUFbFm3hQuvXyCvJI/s3OwJ/x6Xknjdti+TUwAjEieiecOez7qTaIOmhbj/fLxZzCaYMykGsiDdk87Q0BCDA4Ok56YD0Nfdhzvbzbo16zj6/aMEWgJTBmZT1emEX6fculxu190me0U2TWlNOAYcOLucDJUPYVYbbJdluHGYwS2DOC47eLvpbbbdv42L/ovk5OdQVFJEe7Cd61XXWbZ2GUPeIUyGIbUvldVrVtNY3cjGNRvJ8mbR39dPX7CP7o5uhq6OtPzvK+yjzFnGB1d8kKErQ3gDXkofKcV9j5urQ1fJKs8aycMHYLBrkH0P7hvJel3ys7ZgLc998bkl9yY+0d8eEJfb9mVqCmBEEsh8F/vOtRPvbO4/XeARbXAz02Cu6mQVZdvLeLDgQR7Y9AAnTp/glucWN6/dpGxdGd0N3Wzbuo10k87eh/aOvpFPFphNlYE6/NPDlG4qZcWaFWT0ZNB4vRFbYxkcHMQUG8hl5LiAfLB1FpthcaQ6GMgfoPdOLwXrC6i5VsOGsg28ce4NBgcHWV6wnFtXbmGXWTZs2EB7XTspzSk89uhjnLp6ijdeeoN+Rz/ObCeuIhepgQSUCQAAIABJREFUg6mU5pfypT/6Env27MHn8/HDH/+Qo68eJbMok+yubPpr++np66FsWRlrU9fyJ//pT5b0G3bk317qslSOnjvKd/7zdxi8M0iKJ4XU06lkZmdSuqqU4uJinbod5xTAiCyg+U5LL4UOu1MFHhD9J+GZBnORt/eu9LKDHZw+fpoLv7zAGtcaHt32KOkmfaSfykem/+Q9VQYq/DptKNvArdO36FvWR966PLr93SNHAwz1YAfsSPYjC5wDToI2yLAd5mbNTZZvXk5fVx/eQi9bV2wlJT+F9kvtrChaQXowne4z3aT0pPC5P/gcdXV1/Nf/779CGWTfl03QBBm8Nci6VetYlrGM2vpaVvtWjzyv93l4svxJzp05R2tTK6sGV7F65Wo2b9i8pJdMwv8fvvTqS2RszCDnYg6/Pvdrert76R7spjellzRnGvkV+XQHu8lwZdB6tZVu0x3rqcsUFMCILJCF6JOS6B12YerAYyZZlZkGc+Nv713pZeeHd/KBkg9gHIYzPzqDtZaHtzw87WMYH5h++ulPj5lf+HXybPSQk5JDW3Mb6Q3pZAQzSHWmcv32degBM2igAIZ9w1inJdWRiu23XD57mZXulbz885dputjE3vv3suOBHdTW197VmPATBz5B7uZcOto7GE4dJi01jYw1GbS2teJdPnL4Y+Tz6i5wU7S6iMBvzL0xYDwLv0a/PPFLzt88T+76XDoHOsntz6Xq51WQBQNtAzjyHQzcHiBlfQqtfa2k2lR6fD2sLFlJe0N7rB+GTEEBjMgCWajmdHOpW1ksU2Wepgo8xgc3TTebeOfCO9y6cAtgzHVmGsxNdvtdD+zi2KVjPPGpJ0bHpwo0fT7faDFw/1A/l5svc/zUce4tu5dBMzj6eMOvU8OpBlyFLjxbPeRm5UIvtL3VRs9gz//f3pnH2HHcd/5T3f2uefPevDcnZ4YcXkNqeIqibtE07ehKsna8Sexk17sOEBtrLIIEGywcIBskDoxNgCDR7ibGIl44RhzbkWJssj7kRLZFyYotiRJ1ksNzOMPhkHNyrnff3V37R9WbR0qUNNRQIkesD/Dwrq7uql9X1+/bvzoav+bjz/j4bT7BZBBOQ7AjSPrlNEW/yL0P3svDn3qYSDTC08ef5nMf+xyg6tA3vv8Nejt6OXPuDJ13dyJ9CTY4MQfpS/JjeUJrQle0a90G7+U6Q9eT+s2DF/c4evEo3h0eU9UpUrkUJ390EmJAB4ioAB9kUZJ+Lk1wc5C2gTaKssj41DjrrHXXuyiGt8EIGIPhPeK9cho3+hOk3yny9HbC46lDTy2Jm/paLVaPRd+BvqV1Vur7uVox91bbX63QfPQ7j3Imd4bWW1tJJpLMDs0ydHyIVEuKX/3kry6V9/6d93Nx5iKpXIqmHU2s2bGGoBWkMF1g265tzAfn2TCwgWOHjlEqlygMF2jqbaLnwz1kL2QpTZTYe+9euvq6Ljt2OVhesu3ZwbNMzk4iDgtc6eKnfJpub6JSq2DlLDornfT39POzF3/GoYVDdPd2M7B5gK7OrlXX9fhOXCqaz549y9p9a5k6N0U5WCbv5llMLeJ1ejAK9AAXQEoJEWAAmADikDmVoSXWwrpt6/DH/etaJsPbYwSMwfAe8UEYr/JueCdB8E7Coy5uTg6exOqx8Ms+23Zvu6KwWK6Ye7sun/qA20u5dDp0PZ3jOQhL8K3Hv0XzPc200IKwBJm5DPG740xfnF5a+G5uco5Hvv0ITW1NbHp4E+Pnxhk6NcTAwABW2MKqWGwJbmFiZIJaoIYsSLpu7eL2e28n1hrjlelXSO5Mcvr46SUBE2+L88yxZ/jof/zoksA7duYY6x5ex+j5UeLdcXKncuSfzCPzko/f83Hu2XgPj3z7EdKBNLnxHG7MZf7I/NIzjVba9XijTD0+ePAgX/ral5gUk5RFmfy5PKFMCGvGohgoUjxbRLZLCOgEi8AtKPFSQ4kXH6yURXRjlJaFFprSTSTjyXc89o1ig5sRI2AMhveID8J4lXfDciJPbyU8LhU344Pj9B3oY9vubXR1dl1xP/D2DmR4eJjHvvcYP37px3Rt7GLP3XvIRS+P5LyV0LQ9uzFjpTnAM//6DMTBarNwO1xGRkfop59SvoSz0cGddZfST0xM4Ha6VKtVuga6aEo0MX5inNEfjbJr+y6SbUmirVGCbpCEl2BwdBB7p43v+JTyJeyqTcfmDtLn0pflCcHSasL1xfjakm1YZQtf+pCAaCHKzz38c7i2y59/88/p+GgH/Tv6mTs7x8TRCVqclmvyTKMrdaW9PvQ6v/ebv/eeOvD6bKqnDz3NhYkLLCwuUCgXYDMQ0htJKAaK+HllE6aAViCoX21AO1AGmvX7BahOVpExyfzQPL2RXpykw1e+8ZU3Tbmu17eADDCZmqT/w/0rmlFneHcYAWMwvEdcr/Eq17vRXGnk6VJx88YnOr9xP2/XXQUqmjNUHWLNv1kDLrzw0gvsu2ffZSvmvpXQLKaKnBKnmB6ZZuHsAoldCdb1riM8GqaSqhBsCzI1OYVbc5k+Mk3STvLTF37KwOYBZqdn6drehcgISukS8Z4427u3kz6T5rbbbuP1779O/4f7uaNDPZDX+t8Wp6dPc3jqMOt713PHwB2cOnGKylSF7z36PUJOiA6ng3t237Nk23Q6TWJbgnKhTP/mfg7ce4ATx0/wg7/5ASeyJ8iWsxSaCoiSIJlK0tnfSWxNjFA6xObq5nd80OfbicJHv/Mof/+dv2fWniUQCSALklq5huVZDB0f4mv/42srrnP1PBw7fYxUOgUeZPNZTo2dYjY7S9ku4zV7sA4VRdmuEy4AUfCnfagAGaAIvIL6nkIJmgxK8HShFhRsAr/qUylVCDgBTl04xesvvU7shRjRZJSWaAtf+4ev4Vs+G3ZuYM/dezhy+gipXIp1pXWN6Nv8HF/8n18kmUhybPgYoXUhAu0BTkyc4Mi3jvCFz3zBiJhrhBEwBsN7yPs9XuXdzny6lqLnWkSehoeHuThzkSd/+CRdu7rYs2cPETvypv2805Ts1m2tVF6vkIwlEULAFhW52P/z+5ciOVcSmh2JDr74f79I4bYC0a4otekaC/YCtekarclWEsUEuUCOi+cvIkqCQDbAhgc3UGou8fRzT+PNe/S29hJfF1965hIOBP0gi6cWScQTlz2XyQ24xGQM0SFYt2Mdpw6fInchx9qda0E/bkpUBPftuY+njz+tbBuPM/SzISaHJwlaQQafG2ShtEByc5I1D6xh4qUJatM1qm6V00dPU6lWyKaz1NI1BsTAZTOZLuXgwYM88q1HcJtcOrs7qSQr/MXX/4LeZC8z8zMcGz1GraVGSqaoRWsUUd0zTsDBT/u8OPIiv/5bv849d9xDZ6ITYYmlwc39Pf2MTI0s1bP698GTg6SzaZKJJLsGdtHf088/PftPjNZGOTt/Frtsk7qQIl/IU3ErKoLSB8wDSeA8MIISMgLVVeShxEwX0IGyY0n/t0anqwJjqKiMB9iQm8shXIFTdfADPrVqjRw5xibGsIRF7/ZexFbBCy+9QNEtEtoU4vHHH6djawe2b5OupAnKILnmHJNrJwlkA2zdtBWrxWJoaIjHvvcYf/x7f7zsa8Hw1ggp5fXOw9tyxx13yFdeeeV6Z8NgeN9YiZj4yje+8qaoRXruzdNl63fRP3nxJ0zNTlGpVbhl3y3sf2D/klBYyXTvehneOOV3uWnrIqxUKHHk8BFmz83y0F0P8el/++nL9vOHj/zhm5bzrz81WSJZe2Atzx5+lnK8TKQ5gvQl6RfSHHjwwFtOIR4eHuaz/+2zDC4M4u32CLQGcI+7NG1uQlYkkYUI6zvWk5nMUBgvsGvfLvrW9zG/OE86nSZoB1nrryXaG33LMjx16Kml8/TTJ35KqbtEfjFP6lSKztZOJkYm6Bzo5FO/9ing8qdeb+newtnJs5wZPcNEdoL4nXHCm8PMnZmjerLK9r3b2f0LuxkeHWZxcpGFowsUnAKB7gCVxQpiXhD2w3REO6gUK2zp3sLOzTtpWdNCZibDE4efQKwRRKIRasUamZkMlVKFSFcEv+AzPzmPW3OV8w8AEtVN0weEgSzEKjEGNg6QzqfJO3mioSjF+SL5uTzt3e0US0XymTx+1mfD2g0sBBeotFYIyRD7b9nPzJEZKr0VpvPTzE/PU54oQxSYBrai1s9ZB4yjxMwE0K0/u8Cgfs+iIjMRVPoZwAbmgF067xeBo/p3HyV2XCCtymW320QHohTPF3HPuJCD9rXtNCebSc+mqYVq2GWbrR/aSr6SpxKusCOwg3PFcwQGAlCBwESArR/eSjFbpPx0mSe+9cSyroUPKkKIV6WUd6x0PyYCYzDcQLwxgvLywZf58ue/TFOkia3rt/LZX/ksDz744FumX874k4MHD/L7j/w+IxdHcB0XERc4axxGpkeoPFPhofsfWupiAd6VmKpvU09b39dy0l5xzRItwq60FszZwbNMTU2RTqexXItyqYxTckg0J6gkKwxsHuD5wefJiRwXhy9SHi/jzrl84TNfuOLxH/veY1woXcDpcWAOZJPE6/LIHssibUm0O0rbQBuVTIUFb4GF+QWaYk0M7Bygq69rSUD9xsd+g8e+9xiHB9X6Mg/e8eBlAqwepUqlUoTXhbGkxS/92i9BGb49/G2Gpob4m0f/BopQyBfovb2XSq3CYGmQUleJdCmN1+wx++Is1ouWesZSTHLquVNkp7IUi0WK5SKlqRJWxKJarCJbJEQhn8pTW19j/bb1HDt1jLMnz3IgcoDDw4dZ3LRIR38Hs+OzuAWXYl8Ry7PInsniLXhKtHSiBEsQOIGKbpRR3TIRyNk5jhw+wvpPrqdSqJCdyiIsgb/R59zEOZwBB/8WH2/e4+QrJ7G6LWLrYuQKOf75hX/GWXDwyz7FYlEJlRgqYpJBCacYqlvIAmZRs4jCqIiMjxrXMonycI7+rT7eJU4jYiP0PiIo0bIe2IDqWnoZ2Ahe2iN3LodMSLgHOAfztXnmh+chAuE9Yfxxn9GJUTKnM1CEdDKNFbXoaOkgtiFGKa8eDiprkhs9aLCaMALGYLgBqEdE/vFH/0hRFnEed0gvpklX0jg9DoneBNF1Uf7o63/ExMQEZat81WusgBIvn/ujzzHtT+P3+lidFv60j0gLvLiHPW3z+MHHaW9rp/BqgSNnj7D5vs1qyu7QWX77z36bVrsVbC4L9//g4A94+uWnKdfKDKwf4JMPfJKh9NC7WsTvUhF28cJFTh8/TSqVQs7KNwmo/p5+vvH1b9B6dytWi8WJwydwbZdffuCXCdpBnn3iWfbfv5+tya386OCPqIQr7Nq3i20bt/H08afZsGHDZWM7njr0FN/8/jcpd5apiRpeTE27tSpqsbMWq4UoUdwzLsFEkMT+BNlcllJ3iedffJ597CMUCS3Zu+SU3rS+zP0772dkaoTMTIbzZ85TmCkQaguxb+8+KMOTTz7JbGmWfEse13KpTdRI7ElwfvE8oZkQPXf3MDw0zHxqHhEScC/4eR8LCxbBzbtMFidpu6uNkKVW7bU9G9kiid4RpfR0CetOi5qskS/noQ3chMvj33+c8O4woTUh5ibmaN7YTC1RQ56SVO0qXtRTA2Ft1DRkHyUGqkBBfw/o7xmoZWtcPHcR13FxKy7upKvWqolAbaqmIh09wHrwF30yExlEUIADVVnFn/NhL9CEGrcSANaiBEsLahxLFBVN2ayPn0AJm07gAg2Bktb5rqLGwQR12hLKC9oooZRHRXEcVEQno7aVzVIN+g2ihNF2VJTnAlTHq/gxn9J4CbYBC5BpziDOCxYeXSAYCRKwA8yOzOJnfZyCQ8euDqQl2bVpF3/wW3/wtjclhrfGdCEZDCuk7vgGTw7yysuvMDI+QsWvELJDbN24ldv33v6msQCXOuKDBw/ypb/+EuO5cfJOnlqoRrVUpepXsXZYql//HITbwjQ5TViDFp/5r59h8y2bOTt0lsFnBtnUvok17WsYPj3MoTOHCLQF6O/vJ+JHOPH6CWxhs3BxgdnULH6Lr+5Ee1ENfBTstI1VtrCwaO5pJtQcYvHZRewNNhvXbmTv9r1cLF6kmC0yPzTPhv0b8IoeawNree5Hz5EKpHC2O7gBF3/cR56U3DJwC8meJIlEgoGdA4QioaVum7frJqt3g1VKFZ5/8Xm8uMfc+ByZ0QzhWpjbbrmN/ffu54H7HuCpQ08xao8ylZ7i6PNHCfQH6OjuoMPv4MC9Bxg+NczE8xOkc2nC28Ls3bt3aUbTpV1rl0a+vvq/vspc9xyVmQp2p42z3sHNurgvu9y14y4e+sWHOD15mnK8TCqTYvB7g7TvbocyiLOCZEuSh+96GIDIrshlYvKl51/i+e8+T6InQS6dI5/N41U8Ots62bN/D4efP8yF0AVKfgmyYEUsahM17C6beDJOLBcjdkeMsbNjFOYLyG1SRR7GUIJgBOXY7wLHcghbYUqZErIosVIWTfc1UfxJEfmwRMwJQuEQNjaRlggLjy5g7bLwW3xkXpLYrvJYe6mmhMcWGgNi70LVy1OqbnI3KoIxh4qOxIBh/dsalIi4oPO4VRvjHKoeZlBdQX0oEVJCdRVVgI+gunhKNCIo51CREhc1HXoRFYFJoEROM0qwDOnPFkrwbNH2GUYJkVZ9PKH3H9H5v09/XtDbrtf7qQucMWATcFL/Hwfu1PveDRwGdoDt2HinPahBwAoQ7gqTX8hjZ20SdyRw1jqUzpbonuvmy7/75ZtKxFyrLqT3XcAIIX4e+CuU5v2alPLP3m57I2AMNyL1iMm/PPMvDJ0boubWKBfLqk8dVEMqgCA4ZQcC4OKqtSYsi7AVZlffLgp+gTOTZ/C6PSK7IrgFl8pgRd3xlVCNfzeqoZ0C2iF4JMjO/TuJE+fCzAXCsTB21maiOkH2bBYREPgBH7/gQwGCzUFc31XTbAOou0cHFfqPoK5EUA4phHJQ8ygHYev3IDhNDrF4DCfm4OCwcH4Bt+zi4y+tr2GFLPyMnv3RBFbAoinSRCKRIOSEmJmcAQf8mk+iJUH/bf20tbfR4XTwqY9+ipGpEZ44+AQvvPYC2WwW3/bx8REBAbaynYPDbXtuI2EneO3V10gVUmoRN9fHciycsIPjOGzftZ3+Hf0ki0nSmTSDs4NMjk1SrVTxfR8sCHkhPn7g4xw5cYSxxTE8z6OWr8FmkJ0Sb9pD5ASyIBFZQfLWJKH2EOlCGi/i4V/0sVIWtEA1WCUwE2D//fsp5oq89tPXcDe7CCHwa77qOggDk2B1WtghGzkn1Wq8RR9yKGfbRmM6cK+2v0A59RLKkcZBLArkbVI59gXUvod1PamLgWaU866LhLUoQbAL7JCNV/awLH3OXkQ5+WZUPe7Q538UFbnYpI9T1XXIQqVJorpdxvU2BZ2PnC6HRA2kDaMEwEZdxgWUAIrQEAqb9XYngbM63SZdhld02dA2qddXX9U11qHqXQFlkw6UkNFRFFy9fYf+v6jf46iIzaK2sdDHqOr3CEsDfLH0cWs01pTxUddpUX/2dRlaQFgC51aH8GQYL+PhdrqIDkG0ECW+N06lUEGOSj4S+Aj/8JV/4GZhVQoYIYQNnAEeRA27ehn491LKk2+VxggYw41Gff2Lo7NHOV0+TYECnu+pxq+KaqT7UCHnLKohdlCN7FZUI1sCRkEEBNY2C3/CR/ZJ1djOoRrEFn3AOdTd5azex0mIr48T6YvQvaOb3GyOsR+OYbVbuMJFxmXD8fiou+HNKEcyj7qD7UY1+ClU43wB1YDXUA36JpSzq+cflHM7rfLv9DnK8fYokYREOZf6HXURdTfajrriT4JoEdi329ABclHCEWiPtbPrgV1kTmcIVoMM7Bvgh6/9kEwhQ/F8EWlJVfZuZTOraiFygrAMU5urUS1WEd0C2SHVMRPqHFhVi1gtRv/WfvwRn8mLk5Q7y1Tbq5RjZUiDPW9jZ21kRVLrrBHZGsFpcsg9l1NOvo3GbBZPPbfIjtv4rb4ay1CWynlHlKOy52zsko234GFHbCqisiQ2yGkbNaG6IIIsOTmGdb0JoRzpWhoCoB/lNGd02c7rc7JBp1mDcsJJfS7H9DnYos/llD7/8/q8tOnPFbB2WPghX5XvlE6/FiWaUvq4RZ0mjepyqT/bMKy/T+o8RHUd2kQjCmPrcr6obbhNl7GAEhFh4Jjed0jXxygNcTKh97NO1+W03kdM529a2y+AirZE9PHWXFL2uvDq0vmb07ZK6mNN6XxOa3u36XMgaYyb6UFd0/Wuq5jevgd1Xc9rO3jADv07wHGV59hHYjTPN5O+kMbr8RADgvCpMMkPJZFSUhgtMDA5wLP/71luFq6VgLHeeZNryl3AiJRyVEpZBb4NfOJ9zoPBsCKeOvQUc+4c1e4qFbtCYH1AOdgNqMZ3A6oR7EI1hHtQDeF2VGOcRDmZW0HmJaJDqDSzKIexAdUwRnT6NagGs4YSA83ARihQIBgJslBawN5i4816yAGJ1axWeqUZ5Sg2oBredr2vIMoZdqDEVI1GqL0H1QjX78S7UOH5IMpxSmCnGmchtgmV9zV6212ou+qtej9FEHGhVjy1QO6QRDdHIQjWGgvnbofsYpbMXIZKuMJceI6jY0eRzZJARwBru+4+uwUV7u9V+ba6LCqlCl6Pp5xgP8rZbEMJx1aw4hZel8fk8CSlUAm/1cdP+LidLlbIQvQJ/D4fERG4MRexVYAHftTHulNFVMiDlbVwWh2sFgv7bhsrYGGVLeR5qZxuHES3gBDIqEREBL7jU1tfw2qxlFPM67xXaYjTujjqQTn0hKoPNOnz0aX/q3el2PqV1f+PosTMoK4rQv/Wrvcxh3LQ61GRkXpULaO2be5sxjppIV4XiFeFyueDun5OoRxyCSUU6pGhsj5ORO/rZZSoSOuyCRqCpknnK67PT0x/79DlntN1WYspgqpO063336rrWlif20ldD9fqY21ACeScft2m99GnbZnU+92tP1v6/1t1OVppRF5y+rghlNCP6ryu19sv6Hxv0Xlp0cdDp6+P5amXoUWX4Ra1LzkusS2bSDSCQMA82E0q7FktVnGKDms7Lx94b1ge77eA6UVdTnUm9G8Gw6phcm6SiluhGqiCBBFW3RtLMxnCqAYwiGrw2lF3Z/WhEPU1J3QfvG3ZytGn9e8BlPMoopxCPQoyiloJVlp4loclLAqpApXZCuG+MNKVYKEGQro0urOiNAYzoj/bKOdUQTXoA6iGPqTzX+/CcHR6T+cHXY4a+HE9cLQeYq+vq9Gs01X09k36mK3gBB2EEEgpsbosXNellC9RKVVwog6pXEqJHSmVAPB0elS+pFTLwfuejx/wEQisZuvy4+r/rYBF0ApSlVWkLYkkIip9BSzHQkQFUkgkEmLgl31cT83KIqLOp520ce5UjxAQLQLhqCiS3W4TGggp53cRxLzASlj4vsqT3+RjBS0lCEZQEYJxGrNg6nWjblNQTr4e8ZHalildpxK6vqxBjQvxUS1nBngN+Akqgtaqj1FACZyLeh/b9e+7gTaI9ceI7YzR/eluAn0BZeN2nb5Hf96pP9+LuvXsREV4PF0/JUqcFHS+dfcYVWU7QLXwLTQiFWM0pjRndJpOVB2f1/aoCycPdU2kaEzVDtDo2myhMYA4prevD7Stdy210Ki7UtvepSFS4jS6oKBx0yD1PupCyKJxHfjKhlR0fmxdDmgMFK6C0+ZgWRbVsSpW0aLvlj5ERuC/7GOFLcrZMsUzRRLTCT77K5/FcPW837OQxBV+e1MflhDi88DnAfr6+t7rPBkMV0VvRy8nZk8QrAUJhoJU8pXG4EMHJQjqjaaFaoCFehcRgaxI9X1RbS+ygoAdoBKqKId4HtUwzqDutiuoxnMXhJIh7OM28rwkmUwiz0tiTTHleB2BHJGwCaQt1ZVV765q0vmp5ymrXzaNxrwuWso07vpdlIMQEGwJ4mZd/LSv/lsAO27jFb2l7zioiIN2EpZl4efU+A8rY+G5HrZl43ou3oyH4zg4AYfyYpl169aRrqQpVosIIbDzNn7Ex1v0lvJvYWEVLURY4JZdJSxKAhESyLyEIAhPEAqGiFpROjs7qZaqFKtFbGETtILUQjU1FqliYds2whVYeYtwNEzNq+GmXfDAEQ520IZ5CDQFIK/EqkxLREgQIEA1XsWKWQQCAfyKDxIs28LLe0ghscIWfq+vxEbdaUdR9SWH6ipq0d9n9TkI6f/qTjymz8kZGg46qM9lABUBaNb1KUhjbEa33iZDYzpxBkKBEF1tXaRIUZorkWhPMDs/qwREPZrTghJdnq4n9XVR2lAiytZ5mtfbntTHLqCiK0WUI/f0e1Zvf65RN4ihBNM2/fugLktdEFs0xv/U62wzjZlOJf1fTZfdQwm2GKruO9qO9e7bqs5vkIYnyuj3+r7qNw2Cxqq9Ib3vMo1xMAv69xqNriYgKIMEI0GELfDTPtKV9AR7WOOtIZaKsXPDTk7XTjN2aIyaVeO2TbfxB79rZiG9W95vATOBuieps5bGsKwlpJRfBb4KagzM+5M1g2F5PHDfA7w+9DpT01PEnBiV6QqWZ+FPacd+DtXgVfT766gG9ARKvFSU85RjUjXIFZBjkkA+ACkI22Fqa2rIpKQ2UVPTSVvAFjZO2iFux2lxW/jYQx+jOdnMkz9+kqP/epRkc5JsKot73kVmJE7ewXM9hCeUc3VRV9scqmHvQzmDosobbagowRhq23p4XY+BsdtsvCmP0FAI0SNwR1ysTRYiLZCexJ608do95WiLwB7wUh4MQ0AGsE/blMNlRJfAmrPwXvNoDjbTFm5ja89WEoEEXrfH1GtT+GUfOSERTQJxTqgulQqIksApOTQ1NVGcLFJza3hnPPWgvtM0xsD4FlbKYveB3eTH8pTnyxSniwTjQSrhCv6MTygdwvYPM5rTAAAJFUlEQVRsnJyDf8bH2m4RI4Y74iJTkmRPknBfmNlTszgdDtY5C7/Zp3qySrAlSO1EjVBniOr5Kr7l01RoIhwOs5haJFQL4ff5+OfVYGEGaXTfDQPTIHyhxj3ZKMdaQHVT1B3xBOrO/mX9Xu9aGaUxJqpZnyNQrflxvU0IJYAvoKIMw+pcixOC7h3dREUUp8XhzKEzJHcnadnQQubVjGqd6w84rC8dNM3lq9m+hBpX0q7ry6jeXurzPsJSdx9lXY66oIihBE9B7zOEEkoXUQJpTl8r9S4rCyXoS8ARGtGo87p8OuLGeRor8/o0uqWO05j1hP4eRtWVuo18Gqv41gcOS227EioKNU9jDExGp+/R+V2AyGKESDiCnJc4PQ7xUJzqxSr33nkvf/Jf/sQ8OuA94v0exOugmrf7UZfHy8CnpZQn3iqNGcRruBGpz0J65sVnGBsfo1gq4tU8PM9T3Re2RagpREd7BzFinJ8/z0JqAU96OAGH1pZWtq/dzmx+ltHJUZwmh3Ub1jHQP8DM6AyZdIaZhRmq5SpCCiLhCNGWKL2dvXz0no+yb+8+RqZGlla6DfthnnzpSQZPDrKYXgQB0VCU1uZWpCWZTc+Syqbwqh6u56roABZN4SY8zyObyypHUEE16I4aYGwLG8dzcB2XcHOY7du2s279Ol5/4XWymSzVWpVgOEg0GMX31GyhaqFKJpuhZtcIBAP0r+nnwN0HODd+jldPv0qxViQogmzo2sCdd97Jru27LntI3nOHn+PoiaPMz8/j4eHYDsFgEADHcehd08v9++6nr72Pv/vO3/Ha8dco+2XwIBAIEI1G6Wrr4tZtt/Khez/EA/c9wNjYGH/59b/k2NAx8qU8Xk11wbW1tnHvrfeSzWZ56fRLlCtl2pvb2b5hO6lqioX0AsITqlvLlwhLgA9lt0y1UiUUChEOhZFSEgqH2LppKw/d9RCvnXiNx595nNnFWXzfxy27SEsibUnYDrO5ZzO33norUxenGJ8dJ72QJpfN4dkewhZ0RjsZWD/AyMURZuZncF01y0o4AiEE8Wic/bv3M7c4x0unXlICtR4xs2ks3qZnkOFBPBbnwN4D3H7X7cwuzrKYXiS3mGMmPQM2VDNVJuYnyFVyuGW10m49YiiCAjtkk4gkSDgJZkuzFKtF/KoPgBW08KtqxhhVcEIOgWiAkBUiHo4TbA4yOzNLNptV+amq7sR6pDBoBWkONVMsFSlUCksz4xzLIRFMUKJEYb6gxFUAJTZcXU6pP+vun4ATIBgIggW1Qg07bONJD8/18Coe4aYwQUfNzHM9l2hTlC3dWwg3hzlz9gyZYoaaX8Mre0ipxjU1BZroSfaQr+WZT81TK9UQQUEwGGTr2q0cuPsAC9kFBocGyZVyNEebuf/O+/md//Q7RrxcgVU5CwlACPGLwF+iqujfSin/9O22NwLG8EFnJcvuX6vjvFMe3q88GgyGDz6rVsBcLUbAGAwGg8HwwWG1TqM2GAwGg8FgWDFGwBgMBoPBYFh1GAFjMBgMBoNh1WEEjMFgMBgMhlWHETAGg8FgMBhWHUbAGAwGg8FgWHUYAWMwGAwGg2HVYQSMwWAwGAyGVYcRMAaDwWAwGFYdRsAYDAaDwWBYdRgBYzAYDAaDYdVhBIzBYDAYDIZVxw3/MEchRA4Yut75+IDQDsxf70x8gDD2vLYYe15bjD2vHcaW15ZbpJSxle7EuRY5eY8ZuhZPrTSAEOIVY8trh7HntcXY89pi7HntMLa8tgghXrkW+zFdSAaDwWAwGFYdRsAYDAaDwWBYdawGAfPV652BDxDGltcWY89ri7HntcXY89phbHltuSb2vOEH8RoMBoPBYDC8kdUQgTEYDAaDwWC4DCNgDAaDwWAwrDqum4ARQvy8EGJICDEihPj9K/wvhBBf1v8PCiH2LjftzcgK7TkmhDgmhDhyraa3rXaWYc8BIcQLQoiKEOILV5P2ZmOFtjR18w0sw57/QV/jg0KIQ0KIW5eb9mZkhfY09fMSlmHLT2g7HhFCvCKE+NBy014RKeX7/gJs4CywCQgCR4Htb9jmF4EfAgK4Bzi83LQ322sl9tT/jQHt17scN8prmfbsBO4E/hT4wtWkvZleK7Gl/s/Uzau3531AUn/+BdN2vjf21N9N/bw6WzbTGHu7Gzi93LRXel2vCMxdwIiUclRKWQW+DXziDdt8AvimVLwIJIQQ3ctMe7OxEnsa3sw72lNKOSulfBmoXW3am4yV2NLwZpZjz0NSypT++iKwdrlpb0JWYk/D5SzHlnmpFQsQBeRy016J6yVgeoHxS75P6N+Ws81y0t5srMSeoCrRk0KIV4UQn3/Pcrl6WEkdM/XzclZqD1M3L+dq7fk5VOT13aS9GViJPcHUz0tZli2FEL8shDgN/Avw2atJ+0au16MExBV+e+N87rfaZjlpbzZWYk+AfVLKKSFEJ3BQCHFaSvmza5rD1cVK6pipn5ezUnuYunk5y7anEOKjKIdbH2dg6uabWYk9wdTPS1mWLaWU3wW+K4T4MPDfgQeWm/aNXK8IzASw7pLva4GpZW6znLQ3GyuxJ1LK+vss8F1UOO9mZiV1zNTPy1mRPUzdfBPLsqcQYjfwNeATUsqFq0l7k7ESe5r6eTlXVb+00NsshGi/2rR1rpeAeRnYIoTYKIQIAv8OePwN2zwO/IaePXMPkJFSTi8z7c3Gu7anECIqhIgBCCGiwEPA8fcz8zcgK6ljpn5ezru2h6mbV+Qd7SmE6AO+A3xGSnnmatLehLxre5r6+SaWY8t+IYTQn/eiBuwuLCftlbguXUhSSlcI8dvAj1Gjj/9WSnlCCPGf9f//B3gCNXNmBCgCv/l2aa9DMW4YVmJPoAsVzgNVHx6TUv7ofS7CDcVy7CmEWAO8AsQBXwjxu6hR81lTPxusxJZAO6ZuXsYyr/UvAm3AX2vbuVLKO0zb+WZWYk9M23kZy7Tlr6JupGtACfh1Paj3XdVN8ygBg8FgMBgMqw6zEq/BYDAYDIZVhxEwBoPBYDAYVh1GwBgMBoPBYFh1GAFjMBgMBoNh1WEEjMFgMBgMhlWHETAGg8FgMBhWHUbAGAwGg8FgWHX8fzhL5PYWvwBgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGpCAYAAACNuTzKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXTcd33v/+dnRrus0WhseazFjhNL3mI7m8hiQ5baWQpugym0FG5Jm9xf7s+XLr9ff3CBHigFDvfHPc3lUOgP30vrgKGkEE5ZUpc0iYxtiLcgJ15jm5GX2B7JkixpJFm7Rp/fH5pRR7J2zVczo3k9zvGR9J3tI8nnzFvvz/vzfhtrLSIiIiLpwJXoBYiIiIjMFQU+IiIikjYU+IiIiEjaUOAjIiIiaUOBj4iIiKSNjEQvwCmLFi2yy5cvT/QyREREJA6OHj163VpbPNvnmbeBz/Lly6mpqUn0MkRERCQOjDHvxON5tNUlIiIiaUOBj4iIiKQNBT4iIiKSNhT4iIiISNpQ4CMiIiJpQ4GPiIiIpA0FPiIiIpI2FPiIiIhI2lDgIyIiImlDgY+IiIikDQU+IiIikjYU+IiIiEjaUOAjIiIiaWPeTmcXERFJtEAgQPXBaoJNQcqKy9iycQuVlZWJXlZaczTjY4y5ZIw5aYw5ZoypiVzzGWNeM8YEIh+LYu7/GWNMrTHmnDHm8Zjr90Sep9YY83VjjHFy3SIiIrMVCATYuXsnHf4Oyh8qp8Pfwc7dOwkEAoleWlqbi62uR6y1d1prqyJffxrYY62tBPZEvsYYsxb4MHA78ATwTWOMO/KYHcCzQGXk3xNzsG4REZEZqz5YjW+ND2+xF5fLhbfYi2+Nj+qD1YleWlpLRI3Pk8CuyOe7gPfHXP+BtbbXWnsRqAXuNcaUAB5r7SFrrQW+G/MYERGRpBRsCuJZ6BlxzbPQQ11TXYJWJOB8jY8FXjXGWOB/W2u/BfittfUA1tp6Y8ziyH3LgMMxj70audYf+Xz09ZsYY55lKDPEsmXL4vl9iIiITEumzeSVV1+h19VLUUERq1esJttkU1pcmuilpTWnMz6brLV3A78NfNwY8+AE9x2rbsdOcP3mi9Z+y1pbZa2tKi4unv5qRURE4iAQCBBsDdJ6rZXsRdl0L+hmz+t7OH/wPFs2bkn08tKaoxkfa21d5GOjMeYnwL1AgzGmJJLtKQEaI3e/CiyNeXg5UBe5Xj7GdRERkaRUfbCaigcrWNq9lLOnzhIKhShyF1HiKdGprgRzLPAxxuQDLmttR+Tzx4AvAi8BTwFfiXz8WeQhLwEvGGO+CpQyVMT8hrU2bIzpMMbcDxwBPgZ8w6l1i4iIzFawKUj52nJcLhf+ZX4ABgcHCe4PJnhl4mTGxw/8JHLyPAN4wVr778aYXwMvGmOeAS4DHwKw1p42xrwIvA0MAB+31oYjz7Ud+A6QC7wc+SciIpKUyorLaG9ux1vsHb7W3tyu+p4k4FjgY629ANwxxvVmYPM4j/ky8OUxrtcA6+K9RhERESds2biFnbt3AkMnudqb22k508K2rdsSvDLRyAoREZE4q6ys5Jmtz1DQUEBwf5CChgKe2fqM6nuSgEZWiIiIOKCyslKBThJSxkdERETShgIfERERSRsKfERERCRtKPARERGRtKHAR0RERNKGAh8RERFJGwp8REREJG2oj4+IiEgcBQIBqg9WE2wKUlZcxpaNW9TPJ4ko4yMiIhIngUCAnbt30uHvoPyhcjr8HezcvZNAIJDopUmEAh8REZE4qT5YjW+ND2+xF5fLhbfYi2+Nj+qD1YlemkQo8BEREYmTYFMQz0LPiGuehR7qmuoStCIZTTU+IiIicZIRzuCVH71CX7gPr9fL6nWryc7NprS4NNFLkwhlfEREROIgEAhQ31lPa2Yr2euz6VrSxZ5f7KH2l7Vs2bgl0cuTCGV8RERE4qD6YDUrNq6g3JZz9vxZQh0hipYUUZZVplNdSUSBj4iISBwEm4KUry3H5XLhX+wHYHBwkOD+YIJXJrG01SUiIhIHZcVltDe3j7jW3tyu+p4ko8BHREQkDrZs3ELLmRZCTSEGBwcJNYVoOdOi+p4ko60uERGRaRivM3NlZSXPbH1m6LZTQUqLS9m2dZvqe5KMsdYmeg2OqKqqsjU1NYlehoiIzCPRzsy+NT48Cz20N7fTcqaFZ7Y+owDHYcaYo9baqtk+j7a6REREpkidmVOfAh8REZEpUmfm1KfAR0REZIp0civ1KfARERGZIp3cSn0KfERERKYoenKroKGA4P4gBQ0FKmxOMTrOLiIiMg3Ro+uSmpTxERERkbShjI+IiMgUjNe4UFKLMj4iIiKTiDYu7PB3UP5QOR3+Dnbu3kkgEEj00mSaFPiIiIhMQo0L5w8FPiIiIpNQ48L5Q4GPiIjIJNS4cP5Q4CMiIjIJNS6cPxT4iIiITEKNC+cPHWcXERGZAjUunB+U8REREZG0oYyPiIjIDKmpYepRxkdERGQG1NQwNSnwERERmQE1NUxNCnxERERmQE0NU5NqfEREJC3Ntj4n2tTQW+wdvqamhslPGR8REUk78ajPUVPD1KTAR0RE0k486nPU1DA1aatLRETSTrApSPna8hHXPAs9BE8Fp/U8amqYepTxERGRtKOho+lLgY+IiKQd1eekL211iYhI2onW51QfrCZ4KkhpcSnbtm6b1raVujanJmOtTfQaHFFVVWVramoSvQwREZmHoqfCfGt8eBZ6aG9up+VMi4qbHWSMOWqtrZrt8yjjIyIicy7VsyWxp8KA4Y/VB6tT6vtIR6rxERGROTUfZlypa3PqUsZHRETmVCpmS0ZnqDJtpro2pyhlfEREZE6lWrZkrAxVsDXI+YPndSosBSnwERGROZVqPXTG6vJc8WAFJfkl6tqcgrTVJSIic2rLxi3s3L0TYMSJqG1btyV4ZWMbr8tzh7uD7U9tT9CqZKaU8RERkTk1esZV1/Eucgdy2fWzXezYtSPpipxTLUMlE1PgIyIic66yspLtT23nY09+jJ6sHnLX5ybtCS91eZ5fFPiIiEjCxGNKutM0hX1+UY2PiIgkTLympDtNU9jnDwU+IiKSMBnhDF750Sv0hfvwer2sXrea7Nxs1c+IYxzf6jLGuI0xbxljdke+9hljXjPGBCIfi2Lu+xljTK0x5pwx5vGY6/cYY05Gbvu6McY4vW4REXFWIBCgvrOe1sxWstdn07Wkiz2/2EPtL2tVPyOOmYsan78AzsR8/Wlgj7W2EtgT+RpjzFrgw8DtwBPAN40x7shjdgDPApWRf0/MwbpFRMRB1QerWbFxBZvfvZncG7n0Xe+jaEkRZUVl2lYSxzi61WWMKQfeB3wZ+MvI5SeBhyOf7wL2AZ+KXP+BtbYXuGiMqQXuNcZcAjzW2kOR5/wu8H7gZSfXLiIizorW97hcLvyL/QAMDg4S3J9c9T0yvzid8fka8N+AwZhrfmttPUDk4+LI9TLgSsz9rkaulUU+H339JsaYZ40xNcaYmqampvh8ByIi4gj1x5FEcCzwMcZsBRqttUen+pAxrtkJrt980dpvWWurrLVVxcXFU3xZERFJBPXHkURwcqtrE/C7xpj3AjmAxxjzT0CDMabEWltvjCkBGiP3vwosjXl8OVAXuV4+xnUREUlh0f441QerCZ4KUlpcyrat21Kuvmf05PYtG7ek3PeQToy1YyZP4vsixjwMfMJau9UY87dAs7X2K8aYTwM+a+1/M8bcDrwA3AuUMlT4XGmtDRtjfg38GXAE+DnwDWvtzyd6zaqqKltTU+PgdyUiIukuOrndt8Y3Yu6YGhzGnzHmqLW2arbPk4g+Pl8BXjTGPANcBj4EYK09bYx5EXgbGAA+bq0NRx6zHfgOkMtQUbMKm0VEJOFiO08Dwx+rD1Yr8ElScxL4WGv3MXR6C2ttM7B5nPt9maETYKOv1wDrnFuhiIjI9KVK52n5D+rcLCIiEmM6NTvRk2nRTA/oZFqy05BSERGRiGjNToe/Y0rT4nUyLfUo8BEREYmY7rR4TW5PPdrqEhERiZhJzY4mt6cWZXxEREQi1E16/lPgIyIiEqGanflPW10iIjInUqHDcWVlJZvXbeb5Hz/PlcYrLF28lKc/8HTSrVNmThkfERFx3HRPSyVKIBBgz6k93PXkXfynT/8n7nryLvac2pN065SZU+AjIiKOm+5pqURJlXXKzGmrS0REHJcqHY5ns85U2MoTZXxERGQOpMppqZmuM1W28kSBj4iIzIFUOS0103Vqiyx1aKtLREQcF+1wXH2wmuCpIKXFpWzbum1Ot4KmshU103WmylaeKPAREZE5ksgOx9GtKN8aH+Vry2lvbmfn7p1jjpeYyTo1rDR1aKtLRETmPae3olJlK08U+IiISBoINgXxLPSMuOZZ6KGuqS4uz69hpalDW10iIjLvzcVWlIaVpgZlfEREZN7TVpREKfAREZF5T1tREqWtLhERSQvaihJQ4CMiInGm0Q2SzLTVJSIicaPRDZLsFPiIiEjcaHSDJDsFPiIiEjdO98sRmS0FPiIiEjepMoVd0pcCHxERiRv1y5Fkp8BHRETiRv1yJNnpOLuIiMSV+uVIMlPGR0RERNKGMj4iIjIralgoqUQZHxERmTE1LJRUo8BHRERmTA0LJdVoq0tERGYs2BSkfG35iGuehR6Cp4KAtsEk+SjjIyIiMzZRw0Jtg0kyUuAjIiIzNlHDQm2DSTJS4CMiIjM2UcNCze2SZKQaHxERmZXxGhZGt8G8xd7ha5rbJYmmwEdERGZlvALmLRu3sHP3TmAo09Pe3E7LmRa2bd2W4BVLOtNWl4iIzNhEBcya2yXJSBkfERGZsdgCZmD4Y/XB6uEtsGQOdHTcPv0o4yMiIjOWygXMOm6fnhT4iIjIjE3UxyfZ6bh9elLgIyIiMzZRH59kl8rZKpk5BT4iIjJjqVzAnMrZKpk5FTeLiMisJHsB83h03D49KeMjIiJpKZWzVTJzyviIiMiY0uGod6pmq2TmFPiIiMhNoke9fWt8lK8tp725nZ27d6ZERiQdAjaZOW11iYjITVL1qLd688hkFPiIiMhNUvWod6oGbDJ3tNUlIiI3cWKy+lxsQQWbgpSvLR9xzbPQQ/BUMK6vI6lLGR8REblJvBsTztUWlHrzyGQU+IiIyE3ifdR7rragUrmTtMwNbXWJiMiY4nnUe662oKIBW/XBaoKngpQWl7Jt6zad6pJhCnxERMRxTtQMjUe9eWQi2uoSERHHaQtKkoUCHxERcZzGQ0iy0FaXiIjMCW1BSTJQxkdERETShgIfERERSRuOBT7GmBxjzBvGmOPGmNPGmC9ErvuMMa8ZYwKRj0Uxj/mMMabWGHPOGPN4zPV7jDEnI7d93RhjnFq3iIiIzF9OZnx6gd+y1t4B3Ak8YYy5H/g0sMdaWwnsiXyNMWYt8GHgduAJ4JvGGHfkuXYAzwKVkX9POLhuERERmaccC3zskBuRLzMj/yzwJLArcn0X8P7I508CP7DW9lprLwK1wL3GmBLAY609ZK21wHdjHiMiIiIyZY6e6opkbI4CFcD/Z609YozxW2vrAay19caYxZG7lwGHYx5+NXKtP/L56Otjvd6zDGWGWLZsWTy/FRERSSJzMfBU5idHi5uttWFr7Z1AOUPZm3UT3H2suh07wfWxXu9b1toqa21VcXHx9BcsIiJJb64Gnsr8NCd9fKy1IWPMPoZqcxqMMSWRbE8J0Bi521VgaczDyoG6yPXyMa6LiEgaih14Cgx/rD5YPWHWR1kiAWdPdRUbY7yRz3OBLcBZ4CXgqcjdngJ+Fvn8JeDDxphsY8ytDBUxvxHZFuswxtwfOc31sZjHiIhImgk2BfEs9Iy45lnooa5p/L+JlSWSqGllfIwx+UCPtTY8hbuXALsidT4u4EVr7W5jzCHgRWPMM8Bl4EMA1trTxpgXgbeBAeDjMa+zHfgOkAu8HPknIiJpaDoDT6NZnpdee4mcNTncbe/G5XJNOUsk88+EgY8xxsXQEfOPAu9i6Ih6tjGmCfg58C1r7ZjhsrX2BHDXGNebgc3jPObLwJfHuF4DTFQfJCIiScLpLaUtG7ewc/dOYCjT097cTsuZFrZt3XbTOnbu3olvjQ+z2GDKDAdOHGDThk34F/vxLPQQPBWM27okNUyW8dkLVAOfAU5ZawdhqAkh8AjwFWPMT6y1/+TsMkVEJFnFBjoZ4QzqO+tZsXEF5WvLaW9uZ+funXEdSBodeFp9sJrgqSClxaVs27rtpuePrQUqKiqie6Cb/JJ8zp4/i3+xf9wskcxvkwU+W6y1/aMvWmtbgH8B/sUYk+nIykREJOnFZlXK15bzyo9eoTWzlXJb7uiW0lQGngabgpSvHTobs3rdag4cPkBuRS6tba2EmkJjZolk/psw8IkGPcaY9cDqyOUz1tpTo+8jIiLpZ/QJq75wH761vuGsCnDTltJcna6KrQXyL/OziU28eehNqIeC8oIxs0Qy/014qssYUxg5hv5T4CMM1fr8zBiz1xjjmeixIiIy/40+YeX1erH9llBHaPha7JbSXJ6u2rJxCy1nWgg1hRgcHCQ7N5tVJav4u7/+O7Y/tV1BT5qa7Dj7l4AaoNJau81a+36Gjpn/mjGKkEVEJL1EsypRq9etpvVEK1mDWQwODg5vKW3ZuAUYmSGKboX51vioPlgd97VFa4EKGgoI7g9S0FAQ11ojSU2T1vgAG6JFzQDW2kFjzF8BJx1dmYiIJL3RJ6yyc7NZWbCSsqwygvtvLjyOrbuJcvJ01VRqgSS9TBb49FlrB0ZftNYOGGN6HVqTiIg4KJ41NmOdsPrkn3xy3OebTg8eESdMFvjkGGPu4uZ5WQbIdmZJIiLilNGnsOJx3HyirMroIKuitII9p/YAE/fgEXHKZIFPPfDVcW67Fue1iIiIw2Y652omxgqy9pzaw+Z1m6mtq52wB4+IUyY7zv7IXC1EREScN5c1NuMFWbV1tWx/anvcX09kKqY0qysyb+t9wPLYx1hrx8sGiYhIEprLGpu5LmQWmYqpTmf/V+CPgYVAQcw/ERFJIaN724w+bh5Po4+6gwqZJfGmOp293Fq7wdGViIiI46Y65yoepjpMVGQuGWvt5Hcy5n8Ae6y1rzq/pPioqqqyNTU1iV6GiEhai57qqmuqo7S41LHxFDL/GWOOWmurZvs8U834HAZ+YoxxAf0MHWe31lqNrRARkXGpgaAkm6kGPv8TeAA4aaeSIhIRERnDXA0oFRnPVIubA8ApBT0iIjJTczmgVGQ8U8341AP7jDEvA8OjKnScXUREpmoumyeKjGeqGZ+LwB4gCx1nFxGRGQg2BfEsHFka6lnooa6pLkErknQ0pYyPtfYLTi9ERETmNw0olWQwYeBjjPkW8A1r7ckxbssH/gDotdZ+36H1iYhIkppuobL6+kgymLCPjzHmTuCvgPXAKaAJyAEqAQ/wPPC/rLW94z5JgqiPj4iIc2IHkMYGMZNNeVdfH5mpOenjY609Bvy+MWYBUAWUAN3AGWvtudm+uIiIpKaZFiqrr48k2lRrfG4A+5xdioiIpAoNIJVUNdVTXSIiIsM0gFRSlQIfERGZtrmc8i4STwp8RERk2qJT3gsaCgjuD1LQUDBpYbNIMpjsOPu/AuMe+7LW/m7cVyQiIilhokLl1157jed//DxXGq+wdPFSnv7A0zz66KNzvEKRm01W3Pxc5KMB/gH4z84uR0REUt1rr73G5779OXz3+Vj2W8sI1YX43Lc/B6DgRxJusuPs+6OfG2NuxH4tIiLpabLGhc//+Hl89/nI9GZy/p3zdPZ0Qhl87TtfU+AjCTedGh9NZhcRSXNTmbB+pfEKrgIXtVdr6c/pJ9+fT0Z5BsfPH5/yJPZAIMCOXTv47HOfZceuHZrgLnEzYeBjjPFF/wFuY0zRqGsiIpJGYhsXulwuvMVefGt8VB+sHr7P0sVLuXTmEtmF2WTmZIKBgbYBFvoXjrjfeKYSXInM1GQZn6NATeSjB3gz8nn0uoiIpJGpTFh/+gNP0/rrVvqa+7ADls66TrqOdvHQloemNIl9KsGVyExNVuNz61wtREREkt9UJqw/+uijfOCVD/DLN39JS08LRd4iNj+2mbIVZRQ0FEz6GuoKLU6a7Di7G8iNjKzAGHM/kBW5+S1rbYfD6xMRkSQy1Qnrf/5f/pz83fk3DTGdyiT2qQRXIjM12VbX/wD+a8zX/wx8Evgc8FmnFiUiIslpqo0LZ9PgUF2hxUnG2vEPaxlj3gLeZa0diH5trb3LGGOAX1lr3z1H65y2qqoqW1OjMiQRkVQUPTJf11RHaXHpTUfmJf0YY45aa6tm+zyTNTB0RYOeiE8BWGutMWbBbF9cRERkLBN1hRaZjckCnyxjTEG0lsda+yqAMaYQyHF6cSIikvwma2gokkwmq/H5B+CHxphl0QvGmFsYqvX5BycXJiIiyU89dyTVTHac/avGmC7gdWNMfuTyDeAr1todjq9ORESSWmzPHWD44ws/fYHFixcrCyRJZ9KRFdba/2WtXQbcAiy31t6ioEdERGDshobd4W5efeNVZYEkKU1W44MxZh1DR9hvB6wx5m3gOWvtSacXJyIiyW2snjvHjh1j8a2LR2SBmq438ddf/WtWrFhBRjgD4zL0m35lg2TOTTar60ngJ8B+4GngP0c+/3HkNhERSWNj9dxpONnAnffdOXyfhsYGTlw5QaNtJPPWTPZd3cfe0F4y12QqGyRzbrI+PseBJ621l0ZdXw78zFp7h5OLmw318RERia/xTm+N7rnTcK2BvDvyhjM++w/tpzXcSlF7EQDdJd2YLENOew4PPfAQoaYQBQ0FbH9qeyK/PUlyc9XHJ3N00ANgrb1kjMmc7YuLiEh8OH2kPHp6y7fGR/nactqb29m5e+dwN+bY14reF4bGWtQH68kKZ7H6gdUcfv0w3jVeMBAKhobvozlcMlcmK27ujz3KHhU50j4wxv1FRGSOzcWR8ulMTB89rsIf8rN+1Xr8y/x4vV66Q930dPbgLRjKCGkOl8ylyTI+nweqjTH/HTgKWOBdwKcj/0REJMHGO1JefbA6blmf6U5Mj80CRQOzUFOIlWtXsnffXvDAIxsfGZ7DNZXhpSLxMFkfn58aYy4C/w/wZ4ABTgG/b609PgfrExGRSUw3KJmO6Bba0eNHOd14mrsfuBv/Mj8w9UxNNANUfbCajqYOHi5/GOMyDJwZoKC4gG1bt+lUl8yZSY+zRwKcj42+boy5HOnvIyIiCTTWkfJ4bB/F1vXc/+H72XtwL3t+sYdHHn6E3Pzc4UzNRPVFo2/72JMfU5AjCTVpA8MJmLitQkREZmysI+UtZ1rYsnHLrJ43dgutZEkJm9+9maIlRRz+yWEKGgp4ZuszAOPWF2mchSSjSTM+Exj/HLyIiMyZ2K2k4KkgpcWlcdk+Gr2F5l/s5/HHHieYHRw+er5j145x64sAx2uP5pKGsc4PEwY+xpi/HO8mYEH8lyMiIjMx+kh5PExlC22i+iKLdaz2aK5NdpxfUsdkW10F4/xbAPyds0sTEZFEmsoWWjQ4ihUNjia6LdVM5zi/JLfJtrp2WmuvjnWDMeZ3HFiPiIgkidgttJP7T9ISasHr8Q6/2VdWVrJl45YRzQrbm9tHHE+f6LZU4uTJOZlbk2V89kTGU4xgjPkT4GtOLEhERJJHNLgpWFzAXU/exR0fvGNEkfLoZoXRoufo1tt4t6Wa+ZS9SneTZXz+b+A1Y8x7rbUBAGPMZ4CPAA85vTgREUm8yRokTlRf5ETtUSJMltmS1DFhxsda+3Pg/wReNsasM8Z8DdgKPDjeFpiIiMwvwaYgnoWeEdc8Cz3UNdUlaEVzbz5lr9LdVBoY7jHG/DGwDzgIbLbW9ji8LhERSRJONUhMNfMle5XuJsz4GGM6jDHtwMuAB9gMNMZcFxGRec6pBokiiTDZVleBtdYT+Zhlrc2P+doz0WONMUuNMXuNMWeMMaeNMX8Rue4zxrxmjAlEPhbFPOYzxphaY8w5Y8zjMdfvMcacjNz2dWOMukaLiMwRbfPIfGKsdaYBszGmBCix1r5pjClgaLr7+4E/BlqstV8xxnwaKLLWfsoYsxb4Z+BeoBSoBlZaa8PGmDeAvwAOAz8Hvm6tfXmi16+qqrI1NTWOfG8iIulqOnO55kNn4/n4PaUqY8xRa23VbJ9nNrO6JmStrbfWvhn5vAM4A5QBTwK7InfbxVAwROT6D6y1vdbai0AtcG8kgPJYaw/ZoSjtuzGPERGROTLR7K35OJdrPn5PMrtZXVMW6QV0F3AE8Ftr62EoODLGLI7crYyhjE7U1ci1/sjno6+P9TrPAs8CLFumwfEiIvE00bF2mF9zuWDyY/ySmhwPfIwxC4B/Af4va237BOU5Y91gJ7h+80VrvwV8C4a2uqa/WhGR+W02WzfpMpcrSt2a5ydHAx9jTCZDQc/3rbU/jlxuMMaURLI9JUBj5PpVYGnMw8uBusj18jGui4jIJGIDnYxwBvWd9azYuGJGgzYnO9Y+34686xj//ORY4BM5ebUTOGOt/WrMTS8BTwFfiXz8Wcz1F4wxX2WouLkSeCNS3NxhjLmfoa2yjwHfcGrdIiLzxeiJ4q/86BVaM1spt+XDgzZh7K2baMB04u0ThNpDFHmL8Pv8BM8FqXiwYl7P5YpSt+b5ycmMzybgj4CTxphjkWt/xVDA86Ix5hngMvAhAGvtaWPMi8DbwADwcWttOPK47cB3gFyGegpNeKJLRERurlHpC/fhW+vj7Pmz+Bf7gbG3bqIBU9gT5lTLKVr6Wuiu72ZF6Qp8Lh9dx7vocHdQWlzKtq3bhoOm6EDT4KngTbelotghrfPlexIHAx9r7euMXZ8DQ40Qx3rMl4Evj3G9BlgXv9WJiMx/o2tUvF4vXf1dhDpCw9fG2rqJBky/evlXNPQ3kLEsg74bfZxoOkFhRyGLcxbzjeduTrzPx87G8/F7SneOHWcXEZHEGj1RfPW61bSeaCVrMGvCDszR2VwXL1zEXe4m1BnCLDa4K91k3Z3Fvx35Nx3plpSlwEdEZJ4aPWoiOzeblQUruTPrzgk7MA8HTAY6OpozaUcAACAASURBVDpwF7sxmYbsrGwyizLJXJg5fIRdJNXMSR8fERGZe2PVqHzyTz456dZNtKi3ZEkJdcE6chbnQBcsyF9AZ7CTyorKpJzMri7LMhUKfERE5rGZ1KhEA6acvhzOvn2WgYsDZC/Mpv1aO6bO0HtrLxl25NtHooOO0SfYpntUX9KHtrpEROQmlZWV/M2n/obnP/88FaEK7CnLosFFrKpaxcDAAMHW4HCdTzKMdnjhpy9wrusc+97ax6+O/Ipe24tvjU9bcnITBT4iIjKuRx99lM3v2szdt99NWX4Zfutn829tpuLBiuGgIvbYfLQ/0FwGHYFAgFfeeAVTZihaWUSPp4cDJw7QHe5Oyi05SSwFPiIiMq5AIMCRU0foKezBe6uX1VWr8S/z41noGQ4qoqfAYsXe7rTqg9X4b/XDABhjyF2QS35JPseOHVOXZbmJanxERGRM0S2snJIcWAw92UOZlE0bNpFtsoeDikSPdgg2Bbnzvjs59MYhqIRcby6DvYM0nGxgy+9vmfwJIhJdpyRzQxkfEZEUFggE2LFrB5997rPs2LUjrnU10S2sux+4m+7abmyfJc+fx5tvvjmi/8/oY/Pj9QdySllxGbn5uWy6fxO59bmEDoUgAI/d9diUA5dkqFOSuaHAR0QkRTn9Zh3dwvIv8w8HFT0neug50zPitFT0FFhBQ8GE/YGcEg28snOzec8T7+GhRx9iVckqPvqBj075ORJdpyRzR1tdIiIpavQsromGjs5E7BaWf5kf/zI/oaYQBQ0FNz1/okc75PTlsPef9mKM4b4N9/HM+6cXeI0e7wFjzzGT1KeMj4hIinK6qDjRW1hTEc165d2Rx5N/8SQPf/RhujO6p/08o8d7wNzWKcncUeAjIpJionU9R48d5ZVXX6GhsWH4tni+WSd6C2sq4rVFlQpBnsSHtrpERFJIbIfi+7fdz959e9nz+h4e2fgIue5cWs60sG3rtri9XqK3sCYTry2qscZ7bNu6Lam/d5kZBT4iIikkNsPhLfay+bc28+ahNznygyP8zpbfSbs363gepU/2IE/iQ1tdIiIpZHRdj3+Zn8c/9Dj33HEP25/annZv3NqikulS4CMikkJUhDtSKtQhSXLRVpeISArZsnELO3fvBIZqWdqb2+Ne15NqJtqiUjdmGc1YaxO9BkdUVVXZmpqaRC9DRCTuom/mdU11lBaX6s2csQMcYLgQPDZIVEYoNRljjlprq2b9PAp8REQk1kRZkmTJoMSuIyOcQX1nPSs2rhgR4HTVd3GFK/SF+/B6vaxet5rs3GwKGgrY/tT2OV+zzE68Ah/V+IiIyLCJxmAkyzyr0es43nycc+Fz9NpeXC4Xvd291Lxdw3f3fJeLWRdxr3PTXdLNgcMH6O7snrOp8ZKcVOMjIiLDJhqDATg6ImMy0SzPS6+9RM6aHO62d+NyuegL9+Fb6+Ps+bPQAwcOH6CJJrLXZjPgGeB83XkqyivIq8zj2JFjPHb7Y46vVZKXMj4iIjJsojEYTo/ImEhslscsNpgyw4ETB2hobMDr9dJ+tZ3jB47zw2//kGst17h+8TrubjfX9l2j5e0WLpy+ABnQeLFRR93TnDI+IiIybLKGgPFqFjhdsZmooqIiuge6yS/J5+z5s7gH3Bx97SjuW9xk+jKhG65fv05eUR4LKhcw0DfA1WNX8ff7eezex2aVnUqWGieZOQU+IiIOGf0mWVFaQW1dbVK/aU52XD5RR+ljR1OsXreaA4cPkFuRy5XzV6g/V0/+nfn4SnzUBetoe7uN3HtzYRCsz0IzLKxYiLvZzUf+60dmvIbYcSHla8tpb25n5+6dOiWWYrTVJSLigNEFuBfcF/jctz/HhYELCS0MnsxEDQET2SwwtnGjf5mfTfdvggA0H2vGleXi7nfdzYbbN1BaXkpmXiYur4vsrGzc/W4GBgbIsTlUlFXMaq3xGogqiaWMj4iIA2LfJBsaG9j35j5a81vZ9+o+PD4P/mX+4fs5HThMd3tmooaAiZpnNToTlZ2bzaqSVZTcX0JrTiu94V4ABhmkaEkRbQ1t5OXmUeotZXHFYrrOdbFu9bpZrSFeA1ElsZTxERFxQLQQuKGxgQMnDtCR10HRPUV0ZHRw4PABGi43zElhcLIcQZ+t8bJN61evp7y8nK5AF10tXeRl5ZGZl0n2pWzWV6ynYnkF4bYwGY0Zsy5q1riQ+UEZHxERB0TfJM+eP0t+ST6F7kK6mrvwFHvIq8zj7KmzZOdm3/SmGe/i2YmOp6daXcp42aadu3eyfuV6rl69ivuCG3PJ8Mg9j5DZmcm16mtkdGXwiT/6xKy/X40LmR+U8RERcUB0anh9sJ7s3GwyezOpf72eprYmLl+5zIWzF26aIu5EdiaRR9DnQjQTdFvGbVTkV/DEuifY+q6tdDZ20lbbxoMrHuTvP/f3PProo3F7LQ1ETW3K+IiIOCD6JvnOV9/h4u6LtA20seq+VfTn99NytYXMhkw2r9s84k3TiezMZMfTU1kgEOCFn77A4ROHwUJlaSU9GT1UbKng9oW3D2dk4ilRNU4SPwp8REQcUllZyRf/8ov86Vf+lKK7iygqK6I71I3vuo/1f7ieA28eGHG8/cTbJ7hj7R0jnmO2xbPzdXsmEAjw3Pee41z4HL7NPmy/5d9f/Xe8OV6Wdi8dPnUFIwNH9eERbXWJiDiosrKS2xbdRmGokNChELn1uWy6fxMLvAt49a1XR2xrXbh+gfMnzo94/GyzM/NpeyYQCLBj1w62f2o7f/inf8irgVdpy2kjbMLkL8zH3Grozenl7Kmzw4+J3dabL4XeMjvK+IiIOGzD2g10+DtGbDe9/MOX8a/3j9jW2vDIBk68eoLisuK4Zmfmw/ZMNGgJe8JctBcJeUK057aTk5tD7dVaKsorKFxUSHt9O6FQaPhxsYHjfCr0lplTxkdExGHRQudQU4jBwUFCTSEaLjZw5513jrjfilUrqCirmBfZmXiLBi11dXXkrczDV+YjOyObG+03yC7M5lrTNYqyigh3hslyZw3/nGMLyOd7obdMjTI+IiIOi243VR+sJngqSGlxKY/f+zi57twR92tvbmfd6nVsf2p7glaavKLNA0OhEN41XpZULKHlcAuNxxuxHkt3Uzc+l49KXyV3LLyD4P6hn/O2rduGA8f5XOgtU6fAR0RkDozebopu3cD8Kjp2ynDQ4vXSHerGU+rBX+Kn7XIbPZk9ZBVlsXzZcpZmL+WjH/joTVmyQCBAw7UGXn35Vfzr/dx5553kunP1M09Dxlqb6DU4oqqqytbU1CR6GSIi44qeMKprqqO0uFQnjCYQW+Nz8txJXGUuLh6+SPH6YvLceWzasAn/Yj+hphAFDQUjsmaxw0W7O7s5duQYjRcbeezex/jI+z+in3mKMMYctdZWzfZ5lPEREUmQ+VB0PFditws7TSfvHHmHzvOduIpcFC4tHL7fWMf/Y4uavcVeSpaXDAdI+vmnHwU+IiJxpD4xzon+HBuuNXDo3CHC3jBdmV1cHbjKtb3XWFK4hM4bnfhDfgKBwPD9NVxUYulUl4hInKhPjLOiP98D7xygc2UneXfk0fFOBy1tLdTeqOXM5TNkhbMoryof/rkHAgHOnz/Piz9+kf2H9tPQ2ACoqDmdKeMjIhIn6hPjrOjPt/5wPfmr88nKyyIjK4PGmkbceW46r3ey6qlV1HXXUd9Yz8m/OUnZLWWUV5XTeq6V1nArrx97nQ1LN+BucquoOU0p4yMiEifqE+Os6M/Xuiz0Dl3z3OLB7XdT/kA52d5sqk9Uc/TaUTq8Hbzd/Da/6fgNHp+HTQ9soqi9iIF3Brh64Kr6I6UxZXxEROJEfWKcFf353lZ5G785+xtYA70DvfR39HNh7wXC/WEyCzPxLfPR1djFDXuDzGWZnD11lofe+xD+ZX4GBwcJ7g8q6EljCnxEJG3FuxB5vg4ETRbRn+/qlatp7Wzl2tFrXL90nUJPIdevX6d3aS8Xz12kIdBAkS1i0epFNLU0kdWXNfwcCkRFW10ikpacKESeTwNBk1H053tb+DbuyLqDnLocvPleyIS+3D7cvW7c7W76r/TT1t5GYWEhrZdbxx1hIelJGR8RSUuzLUQeL1uk3jzOiv58A4EAb9W+xcr3reTNo2+Sm5FLeDCMcRtcF1zkrcvjnePvsCJ3xbgjLCQ9KfARkbQ0m94usZ2Ay9eW097czs7dO5XdmUPVB6vx3+qHAejq6qKgsoCOtg4Grw+SaTMZaB6g70Ifn//q53n00UcTvVxJIgp8RCQtzaYQWcfWEy/YFOTO++7k0BuHyBrMYrB3kHx3Ph2XOvDdNjS5/ZYNt7B8+XJ27NqhhpIyTDU+IpKWtmzcQsuZFkJNoWnXf+jYeuKVFZeRm5/Lpvs3UZlRSde/dzF4ZpBbVt9C5dpKFjQv4INbPqiGknITBT4ikpZmU4gczRbF0mmhuRUNXLNzs/mDZ/+A3/u938PX5iMnkEPh2UK+9CdfosfVM5yZc7lceIu9+Nb4qD5YnejlSwJpq0tE0tZMC5F1bD3xYoeWBk8FqSqu4tM7Pj3i97n/uf2a0SU3UeAjImlpNj18Rr/p6rRQYkwWuKqhpIxFgY+IJL14NxqMx6ksHVtPfsrMyViMtTbRa3BEVVWVrampSfQyRGSWYoOU2Dev2Rwd37FrBx3+jhGZgFBTiIKGArY/tT1eS5cpiHdQO97z1zXVUVpcqlNdKcwYc9RaWzXb51HGR0SSmhNHx2fTw0fiZy76IcUrM+d0gCZzR6e6RCSpOXF0PBlOZQUCAXbs2sFnn/ssO3btSMsj1rFBbTKfunJivIkkjjI+IpLUxitQdYfdM25MN5Paj3j+xa/Oz0NSJfOmhpXzizI+IpLUxmo0WPvLWuo762f8F/h0e/hM5S/+6WRwUiXT4bRkyLxNhRpWzi+OZXyMMc8DW4FGa+26yDUf8ENgOXAJ+H1rbWvkts8AzwBh4M+tta9Ert8DfAfIBX4O/IWdrxXZInKTsY6OlxWVkbs+d1p/gY+VsZlqIfNkf/FPN4OTKpkOpyXjqaux/p/oWPz84mTG5zvAE6OufRrYY62tBPZEvsYYsxb4MHB75DHfNMa4I4/ZATwLVEb+jX5OEZnnKisr2f7Udr70iS+x/ant9Jv+af0FPtsajcn+4p9uBidVMh1Om033bCeM9/+korRixuNNJPk4lvGx1v7SGLN81OUngYcjn+8C9gGfilz/gbW2F7hojKkF7jXGXAI81tpDAMaY7wLvB152at0ikvym+xf4bGs0Jnu96WZwkjHTkSjJ1A9pvP8ntXW1alg5j8x1cbPfWlsPYK2tN8YsjlwvAw7H3O9q5Fp/5PPR10UkjU03cJjt1tJkrzfdQEydn5PTRP9PkilAk9lJllNdZoxrdoLrYz+JMc8ytC3GsmXL4rMyEUk60w0cZlujMdnrzSSDk65vpFM5HedEz5ypPKdqedKDo52bI1tdu2OKm88BD0eyPSXAPmvtqkhhM9ba/zdyv1eAv2GoAHqvtXZ15PofRh7/XyZ7bXVuFpEoJ7o/j/Ua6hA8sdG/h/PnznNi7wluW3QbG9ZuGK6Ziffvaqq//7n4fyIzF6/OzXMd+Pwt0Gyt/Yox5tOAz1r734wxtwMvAPcCpQwVPldaa8PGmF8DfwYcYehU1zestT+f7LUV+IhILAUmiRc7KqShsYEDJw7gynFRGCrkrvvuouVMC7kDuSNO7MHsx4lMZ0SJ/p8kr6QfWWGM+WeGCpkXGWOuAp8HvgK8aIx5BrgMfAjAWnvaGPMi8DYwAHzcWhuOPNV2/uM4+8uosFlEZiBdt5aSSWwNzdnzZ8kvyScnL4fQ5dBwULL3+3t58uEnRzxutkf9p1Pjpf8n85+Tp7r+cJybNo9z/y8DXx7jeg2wLo5LExGRBCgrLuP8ifPU1dVx5OgRim4pwrvYy2Lv0DkXz0IPWOJeZ6PaHYmlzs0iIjInKkor+NWeX9HqaaXogSLaC9o5/8Z5FvkWAUPByH3r74t7z5yxun+rD0/6SpZTXSIicTf6JE9FaQW1dbWasJ0gtXW1vOe976EuVEdXRxddrV347/HTeL2RsqayoULiDzwDENej/mofILEcLW5OJBU3i6S3sU4Q/ernv+I9m9/Dig0rdGInAT773Gcpf6gcl2tos6GhsYEzgTNc2X+Fj/zuRxSIyoSSvrhZRGQqnOjZAjd34a0L1eG7z0ddXR2Vd1ZqwnYCjK618S/2k22yeU/he2Z8YktkuhT4iEjCjDfcc/O6zRx48wBHTh4BA/dvuJ+PvP8j0wpQRp/kae1oxVvhJXQ5NHwtHQeDJpJGdUgyUHGziCTMWMM9w8VhvvDNL7Dv6j5yHsohd3Mue0N7ee57z015qCjcPAi0qKCIUF0Ir1cnexIl2YaSSnpSxkdEEmas/irBliBN3U3cfsft5PnyADCrDI1XGqe1LTU6u1DqLeX8z89z++bbGRwcVLYhQdQnRxJNGR8RSZjRWRmAa/XXyMjMINebO3wtJz+HXnqpa6qb8nOPzi7cFr6NL/3Jl7gt4zZlG0TSmDI+IpIw0axM0/Umgi1BrtVf49pb1/Au9NId6h7O+PR09pBN9rS3pcbKLjzKo3Fbv4ikHgU+IpIwlZWVbF63mee+9xwDeQP4S/zc+uCt1ByqIXg4SOl9pZhMQ0ughVXuVWo4l8ISNXFdZDT18RGRhBprgGTgWIC397zNoGsQYwz3bbhv2qe6JHk4MfVck9TTj/r4iMi8MFaB84oNK8hpzeFLn/hSglYl8TS6p1I8eig58ZySHhT4iEhCjTdAMsNmsGPXDm1jzAPTmY4OU9vCmu5zikTpVJeIJFR0gGTgWIC9u/fyw3/4If/6j//K6fOn6fB3UP5QOR3+Dnbu3jmtPj6SPMY6vTdeD6XoFtZkv/vpPKdILAU+IpJQ0QLnEwdP0NjTiH+tn5wVOTRmNtLb3Tvc2NC3xkf1wepEL1diBAIBduzawWef+yw7du0YNzAdazr6+YPnabjWcNNjx2pqOdbvXhPXZaYU+IhIwtXW1bL5Q5v5gw/+AQ9vephMbyZFG4o4e+rs8H08Cz3T6uMjzppqZgZu7qnUfbIbO2DJuyPvpscGm4J4FnpGPH6s3726QMtMqcZHRBJudL2GGzcX6y5y460bUASrV6wm20y/j484Z7rFxbE9lXbs2kHu+twxHztezddYv3t1gZaZUMZHRBIutl6jobGBUGeI9vp28ovz6V7QzZ7X93D+4Plpb2NMdStGpm+qmZnpPlZbWOI0BT4iknCxb3ZnAmcoKC6gzJSxLG8ZvSd7KeovoiS/ZFp/3U9nK0ambzbFxRM9VltY4jRtdYlIwkXf7KoPVnN5/2WWbljKA489gH+ZH4DBwUGC+6d3TFl9Xpw1egjsdIa+TvZYbWGJkxT4iEhSiH2zG93JeSbHlNXnxVmxwWrwVJDS4lK2bd02pYBlNo8VmS0FPiKSVGaTSYg11SJZzXuaudlkZpTVkURRjY+IJJV41XhMpUhWdUDOUFG5JDMNKRWReSuazalrqqO0uPSmbM5YA1JDTSEKGgrY/tT2RCw55Wl4qDhFQ0pFRCYx2XZKOtcBObXFp6JySXba6hKRtJWu856c3OKbTX8fkbmgjI+IpK14FVKnmnhmZUZnjjLCGVPuvCySCAp8RCRtpeux6uls8cUGNpk2EztoGXAPUFZcRkVpBXtO7cG3xkf52nLam9upP1+P/aWl4sGKtAomJXUo8BGRtJaOx6qnc9T/ue89R2N2I803mrnWcI0iVxHv/e33cqH7At/4n9/AU+RhxY0VrF63Gv8yPys2rqD7ZPfQqbw0CiYldSjwERFJMxNt8cVmeN566y2aPE0sfWAp3Re7yVqdRWtzK/v27CP7lmz6VvURJkx3STcHDh9gE5soLi+mw3ToVJwkLQU+IjJtavqX2mK3+E7sPUFreytF3iJe+OkLBFuDVDxYQfnacn506kfYXsuS9iX0dPeQX5JPZk4m53af44H7H8BnfLSfaifPlweVcPbUWbJzs1XPI0lNgY+ITEtsn5ZoXcfO3TvVpyXBphuMRm97p+Udlj+yHM9CD6+8+gqtHa0s7V6Ky+UiMy8T/HCt9hp5vjz6uvugD/ptPzn5ORRlFXEjfIPuG930dfVx+vXTXDxxkcfvfZzXXnuN2rpaBceSdBT4iMi0qE9Lcnnttdf42re/xvGrx1m4eiF33H4Hp6+e5nuf+x6P3fUYH/3AR8f9vYz+Xfa6esm8LZOXXnqJ4pXFGAztDe0MtA2wcu1Kzp48y0DLAIvLF9N6tZWu810UFBTwyxd/SUeog8JFhTyx9QmutF3h2a88i3+xn1tX30pvUa+CY0kaCnxEZFrSuelfsohmd/7t3/+NQ5cOMegZJP+BfNqy2njpyEvcuvhWBgsG+ee9/8yh04f4xB99gkcfffSm5xn9u3TjJtAcwB12s3LlStoz2rn8q8vcuHgDd4ebRfmLcHW7uKXwFi7/6jKh/BA9i3rIyMtgweIF5HpzOXDyAKEbIfrX9/Obi78hcCVAVk0W777j3QqOJSmogaGIjDDZnKV0bfqXLKJbjRfcF6gJ1mDuMwxkDNDh6uBK6AptA22cOHKCloIWMu/IxH2Pm+d+8NyYzQlv+l0OQvh6mJzsHOrr6gnUBrBdlqz8LApKCyjIK+DzH/883//m99n8rs24Qi7c19yYVkPp6lJ8t/m4duMa18PXac1qpd/0U7CugMHbB/nFr3/B60den8OflMjYFPiIyLCpdPSdyvBPcU71wWrCxWH2vbmPto42Bj2D9NFHe0M7g3mD0A+Dywe5FrpGZ2snReVFDCweoPpg9U3PNfp32Xmjk1JKKbJFnPjZCVw3XNzynlsoXFGIt9DLho0bqK2rBWDAPUDhwkIKFhUA0HqilYHQAH39ffSEe7C9lsHsQUJtIQbyBgibMOfOn5vTn5XIWBT4iMiw2JoPl8uFt9iLb41vxJtmvKany8ycPHuSw785zOX+y7AAbtTfoC+7D5qAAeAGkA2EoeV6Cz2dPfhL/GOOjBj9u8y9nEtObg5XuUrfLX2ES8OE2kNk5WWRV5nH1atXh58nI5zBteZrdC/sZtGji+jL66P+eD10gm239J/px1Xswp3tpr+1n/6Ofrp7uufyRyUyJtX4iMiwqdbvpGPTv2TxzuV3CBYHySrMIm9VHm3H22ApUAbmbYO9YDH5BlNk6Krr4thPj3HbkttYecvKMZ8v+rsMBAI0tDRwvPE4zZ3NcCt0XO+gK9jFjZwb2HOWBXULePCxBwEwLoN3uZdQe4h8Tz6+W3w0djSSdS6LzO5MzB2GTHcm/Wf6MfWGwuWF5F7PncOflMjYFPiIyLCpdvRNZsnaY2iq65rsfu2d7WRkZ5Djy2HAP4DbuAm/GYYF4Pa4ca130dfRR397P64yF4XrC+nv76e+s55AIDDhCa+KByuoP1hP3ZE6bnTcoLu/m4GMAQbyBzh3+hy5V3LJ2ZIDQL/p532PvY+aYzVc/M1F3MbNA+se4Jblt3DpwiWOXDqC6TIUFBeQtTqL8DvhcYMvkbmkwEckxcXzjT7Vh3Yma4+hqa5rovtdunSJ53/8PKcCp8j0Z1LUVYTH7aEvq4+uW7vobesl945cegp74HUgE3LduVx8+yIrl6wkkB/gr7/61zz9gafH7K8TzfaFc8PcufVODlcfJqMwg77cPlz5LuxFy2DuIJ/7+89x+fplMgYzyHXn8jtP/M7w+kNNIbpPdtMSaqHUVUpbYxt0gHexlw33baCqrCoBP32RkYy1NtFrcERVVZWtqalJ9DJEHBX7RhkbqMzmjT4aSNU11VFaXDpmIDXbYMuprMyOXTvo8HeMyFiFmkIUNBTMaoTCbNc71XWNd7+rv7jKG1ffwHefjytNVwheCWKbLHc9cBdul5tzB86Rn5nPO++8Q19/H/SA/zE/i25fRPBykJzrOTz42w9ycfdFbL/lPZvfw4oNK0b8f3nhpy/wesvrnL58mrA7TNupNgbyBiAMGXkZuBa48K7xEj4ZZuPGjSzuXYwdGBpG2h3u5tixY1x64xL5Wfmsum8VwcYgrjIX4a4wG5ZuwN3kTngAKqnNGHPUWjvr6FkZH5EU5kQzwcnqd2abVXEyK+NEj6HprHe8AGmq64q9X8PlBs6eOsuVq1c4vu84hfcWYtssi4sX0xPuod3VzpndZ7j/ofu5f9n93L7idv7x2j+y5KEl9LT3kLEig1BHiNxFufRe66WnrYcB1wDF9xVTV1dH5Z2V9NpeznWd4+lPPk1LRwtX7VXca9x0d3bT19+HXWHJ8+cRrg9jCg2DOYPYsCUQDNBW2DZUDL0vh6Pnj7L41sWU3lKKXWEJ9gRZtXIV1+uvcy14jauXr/LFv/yigh5JCgp8RFJYIpoJzjbYcrLzsxM1Sjd1N+7u5Vz9Of78i3/O72753eHgZqIAafS6Gi438OahN+mp72HHrh3DzxG9X293LwcOH8CWWOqL6+lf2E/fwj6ae5q5fPUy2a5scvJz6Ovr47HbHxt+/NkLZ2m7rY0MdwZn3jpDc04z4ZwwrnoXx398nP5wP3igs6OThsYGDpw4QF5ZHvW/rKd1cSsmx5B7I5feQC+mwAwdSe8YJDMnEwqh9Vwr3IC+jj56snpwN7tp62pj4+9tpHJNJT974WcUlRXR09XD9fbrPPTehxgcHCS4P6igR5KGjrOLpLBENBMMNgXxLPSMuOZZ6BnzuLQTj5+IEz2GYtfbcLmBA4cPQCV0Lurk1dOv8tRfPcUX/vYLfP/H3x+3FUDsuuov1bPnF3tozWzl/g/fP6JXUvR+bx56k/CSMKcvnablcgvubDdtzW1cOXeFLtNFX0YfOd4cvAu9I7bdnv7A07QcaSHUHmIwfxBba+nb3cdA6wDXfdcZuH2A69nXsJE+PAAAIABJREFUaepo4o1DbzBYMMjF8xe51niNvpw+cityyboti8JbC1m0cRHZ17MxHYbBnkF663sJXwnDEsi6LYv2jHZcfhdXOq5w5uIZALxeL92hbnLycwh1hIDUK46X+U+Bj0gKm84b/WQdmadqtsGWk8GaEz2GYtd79tRZ8irz6Gzt5HrTdcxKw5L3LeFY3zFefetVujtH9qmJBnSx6zr8k8MULSli87s3U7KkZESAVFlZyeZ1mzl54CS/PvBr2oPtFBQXgA96LvfQd6OPG9duUH+8nvM/Pk9HqIOv/++vA0O/39q6Wm5dcCvv/Ms79B7tpWSghJyMHDwPefBs8DBgBmi92kp+RT5nT53l0qVLdNV1kbMwBxcubty4QVdXF1l5Wbgz3eT78lkRXkHeO3lknMrAhYuidUVku7Mx1wyZSzLx3uolUDv0f2n1utV0BbpovdpKYX6hmltKUtJWl0gKi76hVh+sJngqSGlxKdu2bhuz9iRedTWzPfnl9MmxqfQYmk6x8paNW/jbb/8tTQNNnDx2kgX3LKDjNx1UvKeCPF8e1lpCrhD+9X6OHTlGyfKS4cfGBnTRdQWbgpQ/VI7L9R9/d0a3JwOBAHtO7SF/aT4563Jo62ujqbYJCob65tizlsEFg9AH+OF673W+9dNvceLtE+SU5LDhkQ089H88RMPCBrLCWWT2ZtJf0M+ga5D+q/1k9GVQubaS3uZeWs+34i/ws+JdK7iUf4nglSA9fT30FvXi8/poPdJKUUkRH/zIB9n/+n76r/dz9s2z2NMWt9eNf7Ufi8Vf5Of8a+cJNYUoLi9m/cr1nNh/gqKyIgoKC8b8//j/t3fmwXEl933/9HtvLgwGGNw3CBIgCJ7L5Z5ciqLkvSxHtnzJiu1IZUsV5Sg7cVJyynFFcpzEVSlbiR0lFSWyYnst71q2FR1re7Umd72R9iL3JMELIEDwwH3OYO6Zd3T+6DcAyeUBEtzlgf5UTc3xuvt1/17P6+/79XU3cbsun6C5Mlr4aDR3OCtp6G/muJqViq33I/7NaGRuRAQKS0AUQrUhHMfBLtmEqkMAFLIF4rE4vet72f8n+0nOJq8q6K42Dql8narHqpkbmyPWEWM6OI1RMjDTJk6Pg+gSyLTEm/Kwt9sYxw3enX6Xnffu5Oj4UarqqmhpayHhJjjzwhnqN9TjNDmIsCBQCNC1voupt6bYvH4z0aYoxUKRglsgu5jFGVRbSxQaC3Sb3Xyo40M4Jx2akk20P9xOvDLOoDNItCeq+guSYKdtPn7fx5WX7dg4Gxo28Pkvfv6ua/wvV/eA23L5BM3V0cJHo1kD3OxB0KtduflG4l9LsKxUFF2vCHzhtRfofqSb+xruY9eWXbx68FVGa0c5f/o83b3dZCez7Nyxk5AI8cSDTywJgCsJuqt5vJ763lO0b2mnY30H4VyYqTNTyAGJbduIVgHVqG0p6kCOSWRYYgQMSnUl8pk8DZsaGDg9QF93H68cfgXbtmluaGb05CiyXtLX10diLIE1Y7F3915eH3ydV559haJRxIyZRFoiBOwA7XXtfOmffInHH3+coaEhnv720+w/sJ+Klgpi6RjF4SK5Qo7u+m42BDbwq7/0q3d1Q39h3QvUB9h/eD9f+7WvYWdsrFqLwMEAFbEK2te109raqnehv83RwkejuQ252e7zu2FF5qsJFlj5k/f1isALwzd1NrGHPRx86SD9P+xnfWQ9u3fuJiRCaj2cn7z2k/7VPF7l69TX3cfowVEK9QVqemvIjmfVFhRODlmSytsSBbNk4koXT3qcHzhP87ZmCukCTY1N7OjYgVVnkTiWoKOlg5AbInsoi5Wz+MKnv8DY2Bi//63fh26I3RPDFS72qE3vul7qw/UMTwzTNdSl7HpPLU/2PMnhQ4eZn55nnb2Ors4utvVtu6u7dsr/w2cPPEt4c5iqo1W8efhN8tk8WTtL3soTNIPUbawj62YJR8LMD86TFdlbnXXNVdDCR6O5zXg/1rm501dkhqsLluvx4lyvCLw0fFNnE/t+bB8PtD2AMASHvnkIKSUPbX/ommW4VNB+5hOfuSh/5etUu7mWKquKhZkFQpMhwm6YgBngzNwZyIGwBTSAN+QhTUnACCCLkuNvH6cz3sn3n/8+00eneeLeJ9izaw/DE8PvWZDy5//Zz1O9rZrFxCJewCMYCBJeH2Z+YZ6mZrWp6YV2jTfEaelqIfkjq18Q8namfI1++OoPOXL+CNWbqkmVUlQXq3nh+RcgCqWFEkadQWmuhLXJYr4wT0AGyA3l6GzrJDGZuNXF0FwFLXw0mtuM92tRwtWMy/mguJqn62qC5VJRNH1+mhP9JxjtHwW4KJ3rFYFXCv/orkd58diLfOQXP7L0+9UE6tDQ0NIg6aJT5PjMcV56/SW2dm/FFvZSecvXafL1SSKNEWp31FIdrYY8LLyzQM7O4dke3pSHV+cRrAnCAAQbgiTfTJLzcux+fDdPfvJJItEILx57kc99/HOAqkNPfe8p2hraOHXmFI0PNSI9CSZYMQvpSTJnM4SaQ5e1a9kG7+c6UbeS8kOHW+VyZPoI7v0uE6UJEukEJ54/ATGgAURUgAcyJ0m+kiTYHaSur46czDE6MUqH0XGri6K5Clr4aDS3Ge9XY3O776h+LU/X1QTLC6+9sCSKymvtGK0Gnfs6l9bJKadzvSLwSuGvV6A+/e2nOZU+Re09tdTEa5gZnGHw2CCJ6gQ/87M/s1TeR7c9yvTUNIl0goqtFTRvbSZoBMlOZtm8fTNzwTm6+ro4+tpR8oU82aEsFW0VtH64ldT5FPmxPLt276Kps+micxeChSXbnu4/zfjMOOKQwJEOXsKj4r4KinYRI23QWGykp7WHHx78Ia/Nv0ZLWwt93X00NTbdcV2k1+JCsX369Gna97QzcWaCQrBAxsmwkFjAbXRhBGgFzoOUEiJAHzAGVMHiyUWqY9V0bO7AG/VuaZk0V0cLH43mNuNuGI9zI1xLSFxLsJRF0Yn+ExitBl7BY/OOzZcVJCsVgVfrmioPRL6QC6ell+NZroUwBN949htUPlxJNdUIQ7A4u0jVQ1VMTk8uLXg4Oz7Ll7/5ZSrqKtjw5AZGz4wyeHKQvr4+jLCBUTTYGNzI2PAYdsBGZiVN9zRx3+77iNXGeGvyLWq21TBwbGBJ+FTVVfHS0Zf46D/66JIwPHrqKB1PdjByboSqlirSJ9Nk9meQGcmPP/zjPLz+Yb78zS+TDCRJj6ZxYg5zh+eW9txabRfp7TIF/MCBA/z213+bcTFOQRTInMkQWgxhTBnkAjlyp3PIegkBP8ICsAklemyU6PHASBhE10epnq+mIllBTVXNNc99u9hgLaKFj0Zzm3E3jMe5EVbi6bqSYLlQFI32j9K5r5PNOzbT1Nh02XTg6g3P0NAQz3z3Gf7ujb+jaX0TOx/aSTp6sefoSgLVdM3lGUCVAV76fy9BFRh1Bk6Dw/DIMD30kM/ksdZbODPOUvyxsTGcRodSqURTXxMV8QpGj48y8vwI27dsp6auhmhtlKATJO7G6R/px9xm4lke+Uwes2TS0N1A8kzyojwhWFp9urwIY11NHUbBwJMexCGajfIjT/4Ijunwu3/6uzR8tIGerT3Mnp5l7MgY1Vb1Tdlz63Jdfu8Ovsuv//Kvv68Nf3l22ouvvcj5sfPML8yTLWShGwj5gSTkAjm8jLIJE0AtEPRfdUA9UAAq/ffzUBovIWOSucE52iJtWDUWX33qq++Z+l6ubwEZYDwxTs+He1Y1Q1FzY2jho9HcZtyq8Ti3+ma7Wk/XhaLo0h3OL03nat1qoLxHg6VBmv9BMzjw+huvs+fhPRetsHwlgZpL5DgpTjI5PMn86Xni2+N0tHUQHglTTBQJ1gWZGJ/AsR0mD09SY9bwg9d/QF93HzOTMzRtaUIsCvLJPFWtVWxp2ULyVJJ7772Xd7/3Lj0f7uH+BrVBtfE/DAYmBzg0cYh1beu4v+9+Th4/SXGiyHef/i4hK0SD1cDDOx5esm0ymSS+OU4hW6Cnu4d9u/dx/Nhx/voP/5rjqeOkCimyFVlEXlCTqKGxp5FYc4xQMkR3qfuaG9heTUw+/e2n+bNv/xkz5gyBSACZldgFG8M1GDw2yNf/y9dXXefKeTg6cJREMgEupDIpTp49yUxqhoJZwK10oQPltdniR5wHouBNelAEFoEc8BbqewIlhBZRQqkJtZBkBXglj2K+SMAKcPL8Sd59411ir8eI1kSpjlbz9T//Op7h0bWti50P7eTwwGES6QQd+Y5lb9/cLF/6r1+iJl7D0aGjhDpCBOoDHB87zuFvHOYLn/6CFj83CS18NJrbkA96PM6NziS7mWLpZni6hoaGmJ6aZv/399O0vYmdO3cSMSPvSedaU+NrN9dSfLdITawGIQRsVJ6SvT+6d8lzdDmB2hBv4Et/+SWy92aJNkWxJ23mzXnsSZvamlriuTjpQJrpc9OIvCCQCtD1eBf5yjwvvvIi7pxLW20bVR1VS3uCYUHQC7JwcoF4VfyifcOcgENMxhANgo6tHZw8dJL0+TTt29rB3w5NFAWP7HyEF4+9qGxbVcXgDwcZHxonaATpf6Wf+fw8Nd01ND/WzNgbY9iTNiWnxMCRAYqlIqlkCjtp0yf6LpoZdiEHDhzgy9/4Mk6FQ2NLI8WaIr/3x79HW00bU3NTHB05il1tk5AJ7KhNDtWNZAUsvKTHweGDfOqff4qH73+YxngjwhBLg757WnsYnhheqmfl7/0n+kmmktTEa9jet52e1h6+9fK3GLFHOD13GrNgkjifIJPNUHSKymPTCcwBNcA5YBglgASqS8tFiaAmoAFlx7x/rNmPVwLOorxALmBCejaNcARWycILeNglmzRpzo6dxRAGbVvaEL2C1994nZyTI7QhxLPPPktDbwOmZ5IsJgnKIOnKNOPt4wRSAXo39GJUGwwODvLMd5/ht379t1b8X9BcGSGlvNV5eF+4//775VtvvXWrs6HRfGCsRoR89amvvsdLkpx977Tl8lP73x/8eyZmJijaRTbt2cTex/YuCYzVTLsvl+HSqdcrjVsWb/lsnsOHDjNzZoYnHnyCX/jJX7gonX/35X/3nm0jyruISyTt+9p5+dDLFKoKRCojSE+SfD3Jvsf3XXEq99DQEJ/9t5+lf74fd4dLoDaAc8yhorsCWZRE5iOsa1jH4vgi2dEs2/dsp3NdJ3MLcySTSYJmkHavnWhb9IpleOG1F5au0w+e+wH5ljyZhQyJkwkaaxsZGx6jsa+RT/7cJ4GLd4Hf2LKR0+OnOTVyirHUGFUPVBHuDjN7apbSiRJbdm1hx8d2MDQyxML4AvNH5slaWQItAYoLRcScIOyFaYg2UMwV2diykW3d26hurmZxapHnDj2HaBZEohHsnM3i1CLFfJFIUwQv6zE3PodjO0o0BACJ6k7qBMJACmLFGH3r+0hmkmSsDNFQlNxcjsxshvqWenL5HJnFDF7Ko6u9i/ngPMXaIiEZYu+mvUwdnqLYVmQyM8nc5ByFsQJEgUmgF7X+UQcwihJBY0CL/9kB+v33FMoTFEHFnwJMYBbY7ud9Gjji/+6hRJIDJFW5zHqTaF+U3LkczikH0lDfXk9lTSXJmSR2yMYsmPR+qJdMMUMxXGRrYCtncmcI9AWgCIGxAL0f7iWXylF4scBz33huRf+FuxUhxNtSyvtXm472+Gg0dwGXemzePPAmX/n8V6iIVNC7rpfP/vRnefzxx68YfyXjaw4cOMBvfPk3GJ4exrEcRJXAarYYnhym+FKRJx59YqkrCLghEVYOU45bTmslcS+75owv3i63ls/p/tNMTEyQTCYxHINCvoCVt4hXxinWFOnr7uPV/ldJizTTQ9MURgs4sw5f+PQXLnv+Z777DOfz57FaLZgFWSFxm1xSR1NIUxJtiVLXV0dxsci8O8/83DwVsQr6tvXR1Nm0JLw+8/HP8Mx3n+FQv1of6PH7H79IuJW9YolEgnBHGEMa/MTP/QQU4JtD32RwYpA/fPoPIQfZTJa2+9oo2kX68/3km/Ik80ncSpeZgzMYBw21B1hMcvKVk6QmUuRyOXKFHPmJPEbEoJQrIaslRCGTyGCvs1m3eR1HTx7l9InT7Ivs49DQIRY2LNDQ08DM6AxO1iHXmcNwDVKnUrjzrhI7jSihEwSOo7wpBVT3UQTSZprDhw6z7mfXUcwWSU2kEIbAW+9xZuwMVp+Ft8nDnXM58dYJjBaDWEeMdDbN37z+N1jzFl7BI5fLKYETQ3loFlGCK4bqvjKAGdSsrDDKA+Shxu2Mo1pGy/+tPJ6nimUPkfDTiKDEzjqgC9UF9iawHtykS/pMGhmX8DBwBubsOeaG5iAC4Z1hvFGPkbERFgcWIQfJmiRG1KChuoFYV4x8Rm16K23J3eqkuBVo4aPR3MGUPTB/9fxfkZM5rGctkgtJksUkVqtFvC1OtCPKF//4i4yNjVEwCte9Rg4o0fO5L36OSW8Sr83DaDTwJj1EUuBWuZiTJs8eeJb6unqyb2c5fPow3Y90q6nTg6f5lf/8K9SatWByUbfEXx/4a15880UKdoG+dX387GM/y2By8IYWb7xQvE2fn2bg2ACJRAI5I98jvHpae3jqj5+i9qFajGqD44eO45gOP/XYTxE0g7z83MvsfXQvvTW9PH/geYrhItv3bGfz+s28eOxFurq6Lhq78sJrL/Cn3/tTCo0FbGHjxtT0Z6OoFrmrNqqJEsU55RCMB4nvjZNKp8i35Hn14KvsYQ+hSGjJ3nkr/571gR7d9ijDE8MsTi1y7tQ5slNZQnUh9uzaAwXYv38/M/kZMtUZHMPBHrOJ74xzbuEcoakQrQ+1MjQ4xFxiDhESsBu8jIeBAQvgZBzGc+PUPVhHyFCrPJuuiayWRO+Pkn8xj/GAgS1tMoUM1IETd3j2e88S3hEm1BxidmyWyvWV2HEbeVJSMku4UVcNEDZR08E9lIgoAVn/e8D/vgh2ymb6zDSO5eAUHZxxR601FAF7wlaelVZgHXgLHotji4igAAtKsoQ368EuoAI1LicAtKOETjVqnE4U5b3p9s8fRwmiRuA8y8Im6ee7hBrnE/Tj5lGtp4kSWBmU18hCeZAWVVhZKdVg6CBKUG1BeZXOQ2m0hBfzyI/mYTMwD4uVi4hzgvmn5wlGggTMADPDM3gpDytr0bC9AWlItm/Yzm/+89+86sOM5srori6N5hZRbjD7T/Tz1ptvMTw6TNErEjJD9K7v5b5d971nrMOFDfiBAwf47f/524ymR8lYGeyQTSlfouSVMLYaatzCGQjXhamwKjD6DT79rz9N96ZuTg+epv+lfjbUb6C5vpmhgSFeO/UagboAPT09RLwIx989jilM5qfnmUnM4FV76sm3DdUwRMFMmhgFAwODytZKQpUhFl5ewOwyWd++nl1bdjGdmyaXyjE3OEfX3i7cnEt7oJ1Xnn+FRCCBtcXCCTh4ox7yhGRT3yZqWmuIx+P0besjFAktdS9drTuv3F1XzBd59eCruFUus6OzLI4sErbD3LvpXvbu3stjjzzGC6+9wIg5wkRygiOvHiHQE6ChpYEGr4F9u/cxdHKIsVfHSKaThDeH2bVr19IMsQu7AC/0tH3t97/GbMssxakiZqOJtc7CSTk4bzo8uPVBnvixJxgYH6BQVSCxmKD/u/3U76iHAojTgprqGp588EkAItsjF4nQN159g1e/8yrx1jjpZJpMKoNbdGmsa2Tn3p0cevUQ50PnyXt5SIERMbDHbMwmk6qaKmLpGLH7Y5w9fZbsXBa5WSpPx1mUkBhGCYIHwTIswkaY/GIemZMYCYOKRyrI/X0O+aREzApC4RAmJpHqCPNPz2NsN/CqPWRGEt+i8mi/YSvBspHlgcIPourlSVU3eQjlMZlFeWNiwJD/WzNKfJz389jrG+MMqh4uorqsOlHiJY/q0ioCH0F1ReVZ9ticQXlmHNS09AWUxyeOEkeVKKEz6H82UEJpo2+fIZSAqfXPJ/z0I37+H/E/z/th1/nplIXRWWADcMI/XgU84Ke9AzgEbAXTMnEHXLAhYAQIN4XJzGcwUybx++NY7Rb503laZlv4yq99ZU2Jn5vV1XXHCB8hxI8C/w2lsb8upfzPVwuvhY/mdqTsofnbl/6WwTOD2I5NIVdQYwZA3YAFEASrYEEAHBy1VohhEDbCbO/cTtbLcmr8FG6LS2R7BCfrUOwvqifMPKrRaEHdoCeAeggeDrJt7zaqqOL81HnCsTBmymSsNEbqdAoREHgBDy/rQRaClUEcz1HTnQOop1UL1UURQf0TQTVkIVTDNodqWEz/PQhWhUWsKoYVs7CwmD83j1Nw8PCW1kcxQgbeoj+bpgKMgEFFpIJ4PE7ICjE1PgUWeLZHvDpOz7091NXX0WA18MmPfpLhiWGeO/Acr7/zOqlUCs/08PAQAQGmsp2Fxb077yVuxnnn7XdIZBNq8T7Hw7AMrLCFZVls2b6Fnq091ORqSC4m6Z/pZ/zsOKViCc/zwICQG+LH9/04h48f5uzCWVzXxc7Y0A2yUeJOuoi0QGYlIiWouaeGUH2IZDaJG3Hxpj2MhAHVUAqWCEwF2PvoXnLpHO/84B2cbgchBJ7tqS6OMDAORqOBGTKRs1Kt3pzzII1qpOtYnpbd5ttfoMRAHtUAV4FYEMh7pRIE86i0h/x6UhYRlahGvywu2lFCYjuYIRO34GIY/jU7iBIHlah63OBf/xGUp2SDf56SX4cMVJwaVPfQqB8m6+cj7ZdDogYYh1HCYb1fxnmUcIqwLDC6/XAngNN+vA1+Gd7yy4Zvk3J99VRdowNV77IomzSgBJDvtcHxwzf4x3P+exXKQ7Tg21j45yj57xGWBj5j+Oe1WV4TyEP9T3P+Z88vQzUIQ2DdYxEeD+MuujiNDqJBEM1GqdpVRTFbRI5IPhL4CH/+1T9nrbCmhI8QwgROAY+jhqO9Cfy8lPLEleJo4aO53SivX3Jk5ggDhQGyZHE9V900S6ibeyfKNZ5C3cAt1M25F3VzzgMjIAICY7OBN+YhO6W6Sc+ibqTV/glnUU+zM34aJ6BqXRWRzggtW1tIz6Q5+/2zGPUGjnCQVXK5wfJQT9/dqAZoDvXE3IJqKBKom/p51I3fRjUEG1CNZDn/oBrFAZV/q9NSDXarEldIVKNUfoLPoZ5+61H/+BMgqgXmfSY0gFyQcBjqY/Vsf2w7iwOLBEtB+vb08f13vs9idpHcuRzSkKrsLcpmRslApAVhGcaetSnlSogWgWyQ6pxxdQ2MkkHMjtHT24M37DE+PU6hsUCpvkQhVoAkmHMmZspEFiV2o02kN4JVYZF+Ja3EQR3Ls4Ncta+WWWXi1XpqrEZBqkY/oho4c9bEzJu48y5mxKQoiksihbRvowpUV0mQpcaRIb/ehFANcDvLwqEH1dhO+WU751+TLj9OM6rxrvGv5Vn/Gmz0r+WEf/3n/OtS538ugrHVwAt5qnwn/fjtKLGV8M+b8+MkUV1D5T07w/73cT8PUb8ObWDZ62P65Tzo23CzX8YsSnyEgaN+2iG/PkZZFjVjfjodfl1O+mnE/PxN+vYLoLw7Ef98zReUvSzYmvz8zfq2qvHPNeHnc9K3d51/DSTL44JaUf/pchdbzA/fivpfz/l2cIGt/u8Ax1SeYx+JUTlXSfJ8ErfVRfQJwifD1HyoBikl2ZEsfeN9vPx/X2atcLOEj3HtILcFDwLDUsoRKWUJ+CbwiVucJ43munjhtReYdWYptZQomkUC6wKqYe5C3bS7UDfPJtQNdCfqBroFdROvQTVO94DMSESDUHFmUA1NF+qGGvHjN6NutDZKRFQC6yFLlmAkyHx+HnOjiTvjIvskRqVaGZhKVAPThbph1/tpBVGNaANKhNksdwm0om7e5Sf/JlQ3QhDV4EpgmxpHIjYLlfdmP+x21FN8r59ODkSVUCvkGiC3SqLdUQiC0WxgPWSRWkixOLtIMVxkNjzLkbNHkJWSQEMAY4vfzbcJ1S3RpvJtNBkU80XcVlc1nj2oRmozSnDWglFl4Da5jA+Nkw/l8Wo9vLiH0+hghAxEp8Dr9BARgRNzEL0CXPCiHsYDyoNDBoyUgVVrYVQbmA+ZGAEDo2Agz0nVWFeBaBEQAhmViIjAszzsdTZGtaEa04yf9xLLorYsqlpRQiCu6gMV/vVo8o+Vu3xM/5Xyj4+gRFC/X1eE/1u9n8YsqmFfh/LElL14iypsZWMlxgkD8a5AvC1UPh/36+cEqiHPowRG2RNV8M8T8dN6EyVGkn7ZBMtCqMLPV5V/fWL+9wa/3LN+XfZFGEFVp2nx06/161rYv7bjfj1s98/VhRLWaf91r59Gp2/LGj/dHf5nwz9+j1+OWpY9PWn/vCHUA0LUz+s6P/y8n++Nfl6q/fPhxy+PVSqXodovwyaVlhyVmIZJJBpBIGAOzArlZi3lSlg5i/bGiyckaFbGnSJ82lB/wzJj/m8azR3D+Ow4RadIKVACCSKsumGWZoaEUTfOIOpGWY96GiwP9SivGeKPMTANUwmEpP97ANXo5FCNSdnrMoJaOVgauIaLIQyyiSzFmSLhzjDSkWCgBog6LHe7RVke5In/2UQ1akVUQ9CHaiBCfv7LXS2WH9/184NfDhu8Kn9AbbkroLwuSqUfr+iHr/DPWQtW0EIIgZQSo8nAcRzymTzFfBErapFIJ5RIklIJB9ePj8qXlGrbAc/18AIeAoFRaVx8Xv+4ETAIGkFKsoQ0JZF4RMUvgmEZiKhAColEQgy8gofjqlluRNT1NGtMrAfUVhWiWiAs5bUy601CfSHVaE6DmBMYcQPPU3nyKjyMoKGExDDKIzHK8qyict0o2xSUOCh7mKRvy4Rfp+J+fWlGjXvxUHfOReAd4O9RHrta/xxZlDCa9tPY4v++A6iDWE+M2LYYLb/QQqAzoGxc78dv9T/o2UCUAAAPjElEQVRv8z/vRj2yNqI8Sq5fPyVK1GT9fPvdeJSU7QB1h69m2TNyluWp5Yt+nEZUHZ/z7VEWXC7qP5Fgecp8gOUu2GqWB1bH/PDlAcjlLrBqluuu9G3vsCxuqljuKoPlhw3pp1EWUAbL/wNP2ZCinx/TLwcsD6AugVVnYRgGpbMljJxB56ZOxKLAe9PDCBsUUgVyp3LEJ+N89qc/i+b6uVNmdYnL/PaePjohxOeBzwN0dna+33nSaK6LtoY2js8cJ2gHCYaCFDPF5UGZFkpIlG+2BurGLdS7iAhkUarvCyq8SAkCZoBiqKga0nOoG+oU6um+iLrpbodQTQjzmIk8J6mpqUGek8QqYqrBtgRyWMIGkKZU/6xyt1qFn59ynlL+y2S5ESiLnQLLXgYH1bAICFYHcVIOXtJTx+bBrDJxc+7SdyyUh8NvXAzDwEur8S3GooHruJiGieM6uFMulmVhBSwKCwU6OjpIFpPkSjmEEJgZEy/i4S64S/k3MDByBiIscAqOEiR5gQgJZEZCEIQrCAVDRI0ojY2NlPIlcqUcpjAJGkHskK3GWhUNTNNEOAIjYxCOhrFdGyfpgAuWsDCDJsxBoCIAGSVyZVIiQoIAAUpVJYyYQSAQwCt6IMEwDdyMixQSI2zgtXlKpJQb+yiqvqRRXVrV/vcZ/xqE/GPlxj/mX5NTLDfsQf9aBlAeh0q/PgVZHnvS4odZZHla9yKEAiGa6ppIkCA/mydeH2dmbkYJj7L3qBol1ly/npTXtalDiS/Tz9OcH/aEf+4sypuTQwkA139P+eHPLNcNYiihtdn/vd8vS1lIGyyPbyrX2UqWZ47l/WO2X3YXJfRiqLpv+XYsdzOX/PwGWW6JFv33clrlhw3B8irPIT/tAsvjfOb9322Wu8SAoAwSjAQRpsBLekhH0hpspdltJpaIsa1rGwP2AGdfO4tt2Ny74V5+89f0rK4b5U4RPmOoZ6Ay7SwPV1tCSvk14Gugxvh8MFnTaFbGY488xruD7zIxOUHMilGcLGK4Bt6ELwjOoG6URf/9XdSN9zhK9BRVoyvPSnUjL4I8KwlkApCAsBnGbraRNRJ7zFbTeqvBFCZW0qLKrKLaqebjT3ycyppK9v/dfo78vyPUVNaQSqRwzjnIRYmVsXAdF+EK1Sg7qH/bLKpB6EQ1IjmVN+pQXomzqLDlbgB/jI9ZZ+JOuIQGQ4hWgTPsYGwwEEmBdCXmuIlb76oGOgfsBDfhwhAEZABzwKQQLiCaBMasgfuOS2WwkrpwHb2tvcQDcdwWl4l3JvAKHnJMIioE4oxQXT9FEHmBlbeoqKggN57DdmzcU67agHKA5TE+noGRMNixbweZsxkKcwVykzmCVUGK4SLelEcoGcJ0Tay0hXfKw9hiECOGM+wgE5Ka1hrCnWFmTs5gNVgYZwy8So/SiRLB6iD2cZtQY4jSuRKe4VGRrSAcDrOQWCBkh/A6PbxzahA1/Sx3Mw4BkyA8ocZ1magGOYvqTik34GMoT8Kb/nu5C2iE5TFflf41AtUKHPPDhFDC+TzKqzGkrrU4LmjZ2kJURLGqLU69doqaHTVUd1Wz+PaiujuXN+4sL/00ycWrH7+BGjdT79eXET+89K/7MEvdkhT8cpSFSAwllLJ+miGUwJpGCatZ/79S7lozUA8CeeAwy96vc375fA8f51heydljufvsGMuzyPC/h1F1pWwjj+VVn8sDqqVvuzzK6zXH8hifRT9+q5/feYgsRIiEI8g5idVqURWqojRdYvcDu/lP//I/6S0q3ifulMHNFuq2+Cjqb/Um8AtSyuNXiqMHN2tuR8qzul46+BJnR8+Sy+dwbRfXdVU3i2kQqgjRUN9AjBjn5s4xn5jHlS5WwKK2upYt7VuYycwwMj6CVWHR0dVBX08fUyNTLCYXmZqfolQoIaQgEo4QrY7S1tjGRx/+KHt27WF4YnhpZeSwF2b/G/vpP9HPQnIBBERDUWora5GGZCY5QyKVwC25OK6jvBEYVIQrcF2XVDqlGpAiqiGw1MBrU5hYroVjOYQrw2zZvIWOdR28+/q7pBZTlOwSwXCQaDCK56rZV6VsicXUIrZpEwgG6GnuYd9D+zgzeoa3B94mZ+cIiiBdTV088MADbN+y/aLNH1859ApHjh9hbm4OFxfLtAgGgwBYlkVbcxuP7nmUzvpO/uTbf8I7x96h4BXAhUAgQDQapamuiXs238OHdn+Ixx55jLNnz/IHf/wHHB08SiafwbVVV2FdbR2779lNKpXijYE3KBQL1FfWs6VrC4lSgvnkPMIVqvvNkwhDgAcFp0CpWCIUChEOhZFSEgqH6N3QyxMPPsE7x9/h2ZeeZWZhBs/zcAoO0pBIUxI2w3S3dnPPPfcwMT3B6Mwoyfkk6VQa13QRpqAx2kjfuj6Gp4eZmpvCcdSsNWEJhBBURavYu2MvswuzvHHyDSVsyx46k+VF+/wZebhQFati36593PfgfcwszLCQXCC9kGYqOQUmlBZLjM2NkS6mcQpqZeayh1IEBWbIJB6JE7fizORnyJVyeCUPACNo4JXUDDxKYIUsAtEAISNEVbiKYGWQmakZUqmUyk9JdXuWPZNBI0hlqJJcPke2mF2aaWgZFvFgnDx5snNZJcoCKJHi+OWU/me/mypgBQgGgmCAnbUxwyaudHEdF7foEq4IE7TUTEfHdYhWRNnYspFwZZhTp0+xmFvE9mzcgouUatxWRaCC1ppWMnaGucQcdt5GBAXBYJDe9l72PbSP+dQ8/YP9pPNpKqOVPPrAo/zqP/5VLXouw5qa1QUghPgx4A9QVfuPpJS/c7XwWvho7nZWs73DzTrPtfLwQeVRo9Hc/aw54XO9aOGj0Wg0Gs3dw1qbzq7RaDQajUazarTw0Wg0Go1Gs2bQwkej0Wg0Gs2aQQsfjUaj0Wg0awYtfDQajUaj0awZtPDRaDQajUazZtDCR6PRaDQazZpBCx+NRqPRaDRrBi18NBqNRqPRrBm08NFoNBqNRrNm0MJHo9FoNBrNmkELH41Go9FoNGuGu3aTUiFEGhi81fm4S6gH5m51Ju4itD1vLtqeNxdtz5uHtuXNZZOUMrbaRKybkZPblMGbsYurBoQQb2lb3jy0PW8u2p43F23Pm4e25c1FCPHWzUhHd3VpNBqNRqNZM2jho9FoNBqNZs1wNwufr93qDNxFaFveXLQ9by7anjcXbc+bh7blzeWm2POuHdys0Wg0Go1Gcyl3s8dHo9FoNBqN5iK08NFoNBqNRrNmuOOEjxDiR4UQg0KIYSHEb1zmuBBCfMU/3i+E2LXSuGuRVdrzrBDiqBDi8M2aZninswJ79gkhXhdCFIUQX7ieuGuNVdpS181LWIE9f9H/j/cLIV4TQtyz0rhrkVXaU9fPC1iBLT/h2/GwEOItIcSHVhr3skgp75gXYAKngQ1AEDgCbLkkzI8B3wcE8DBwaKVx19prNfb0j50F6m91OW6X1wrt2Qg8APwO8IXribuWXquxpX9M183rt+cjQI3/+WP63vn+2NP/ruvn9dmykuUxyTuAgZXGvdzrTvP4PAgMSylHpJQl4JvAJy4J8wngT6XiIBAXQrSsMO5aYzX21LyXa9pTSjkjpXwTsK837hpjNbbUvJeV2PM1KWXC/3oQaF9p3DXIauypuZiV2DIjfaUDRAG50riX404TPm3A6AXfx/zfVhJmJXHXGquxJ6jKt18I8bYQ4vPvWy7vHFZTx3T9vJjV2kPXzYu5Xnt+DuXpvZG4a4HV2BN0/byQFdlSCPFTQogB4G+Bz15P3Eu507asEJf57dL5+FcKs5K4a43V2BNgj5RyQgjRCBwQQgxIKX94U3N4Z7GaOqbr58Ws1h66bl7Miu0phPgoqqEuj6PQdfO9rMaeoOvnhazIllLK7wDfEUJ8GPiPwGMrjXspd5rHZwzouOB7OzCxwjAribvWWI09kVKW32eA76DcjmuZ1dQxXT8vZlX20HXzPazInkKIHcDXgU9IKeevJ+4aYzX21PXzYq6rfvkCsVsIUX+9ccvcacLnTWCjEGK9ECII/EPg2UvCPAt8xp+N9DCwKKWcXGHctcYN21MIERVCxACEEFHgCeDYB5n525DV1DFdPy/mhu2h6+ZluaY9hRCdwLeBT0spT11P3DXIDdtT18/3sBJb9gghhP95F2og8/xK4l6OO6qrS0rpCCF+Bfg71GjuP5JSHhdC/FP/+P8CnkPNRBoGcsAvXy3uLSjGbcNq7Ak0odyOoOrRM1LK5z/gItxWrMSeQohm4C2gCvCEEL+GmoWQ0vVzmdXYEqhH182LWOF//UtAHfA/fds5Usr79b3zvazGnuh750Ws0JY/g3oAt4E88Cl/sPMN1U29ZYVGo9FoNJo1w53W1aXRaDQajUZzw2jho9FoNBqNZs2ghY9Go9FoNJo1gxY+Go1Go9Fo1gxa+Gg0Go1Go1kzaOGj0Wjed4QQrr+z8jEhxF8JISr83zOXhPslIcT/8D//e+Hvui6E+BMhxBk/jcNCiH9xhfN8SwixYQX5+d9CiD1XOf5NIcTG6ymjRqO5M9DCR6PRfBDkpZQ7pZTbgBLwT28gjV/309gppfzKpQeFEFsBU0o5soK0HkJtHHklvgr8mxvIo0ajuc3Rwkej0XzQvAz0vA/p/iLwPQAhxD8TQvxu+YDvSfrv/ufNwCmgVwjxxgVhuoQQ/Rfk8TEhxB21yKtGo7k2WvhoNJoPDF9IfAw46v8UuaD76jDwH64S/fcuCLv9Msf3AG/7n78F/PQFxz4F/IX/+WPA81LKk0Dwgq6xTwF/CSCl9FCrld9zfSXUaDS3O1r4aDSaD4KIL2zeAs4D/8f/PX9B99VO1DL/V+LCrq6jlzneAswCSClngREhxMNCiDpgE/CqH+5JoLxFwF8CP+d/vlAcAcwArddVSo1Gc9uj3bgajeaDIO8Lm/f1HED4gu9/gRI1A8B3pJTSH1QdL++O7Yf5KyHEtwEppRy6IH7YT1Oj0dxFaI+PRqO5WzjJxWOHvg38JPDzLHtyPgq8VA4gpTwNuMAXudjbA9ALrOnNODWauxEtfDQazd3C3wIfKX+RUiaAE8A6KWV5EPPHWO7mKvMXwD/CH98DIIRoQnmpJt/PDGs0mg8evTu7RqO5KxBCRFDenD1SSvcKYd4BHpJS2tdI618BKSnl/7laOI1Gc+ehPT4ajeauQEqZB34LaLtKmF3XEj0+SeCpm5U3jUZz+6A9PhqNRqPRaNYM2uOj0Wg0Go1mzaCFj0aj0Wg0mjWDFj4ajUaj0WjWDFr4aDQajUajWTNo4aPRaDQajWbN8P8BMi9LrUCWjTUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -670,28 +766,36 @@ "#Make cross plot of PHIF and KLOGH\n", "fig, axs = plt.subplots(figsize=(9, 7)) \n", "axs.scatter(PHIF[(PHIF>0.1) & (VSH<0.5)],KLOGH[(PHIF>0.1) & (VSH<0.5)], color = 'g', Edgecolor = 'k', alpha = 0.4)\n", - "axs.set_xlim([0,0.3])\n" + "axs.set_xlim([0,0.3])\n", + "axs.set_xlabel('PHIF (v/v)')\n", + "axs.set_ylabel('KLOGH (mD)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Export the calculted paraemter as a LAS file" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> The calculate properties from the well log are exported as a LAS file." ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "# Export the calculted paraemter as a LAS file\n", "well_11A.data['KLOGH']=KLOGH\n", "well_11A.data['PHIF']=PHIF\n", "well_11A.data['VSH']=VSH\n", "well_11A.to_las(fname='11A_output.LAS',keys = ['KLOGH', 'PHIF', 'VSH'])" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {