-
Notifications
You must be signed in to change notification settings - Fork 45
/
sp800_22_frequency_within_block_test.py
78 lines (65 loc) · 2.32 KB
/
sp800_22_frequency_within_block_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
# sp800_22_frequency_within_block_test.pylon
#
# Copyright (C) 2017 David Johnston
# This program is distributed under the terms of the GNU General Public License.
#
# This file is part of sp800_22_tests.
#
# sp800_22_tests is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# sp800_22_tests is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sp800_22_tests. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import math
from fractions import Fraction
#from scipy.special import gamma, gammainc, gammaincc
from gamma_functions import *
#ones_table = [bin(i)[2:].count('1') for i in range(256)]
def count_ones_zeroes(bits):
ones = 0
zeroes = 0
for bit in bits:
if (bit == 1):
ones += 1
else:
zeroes += 1
return (zeroes,ones)
def frequency_within_block_test(bits):
# Compute number of blocks M = block size. N=num of blocks
# N = floor(n/M)
# miniumum block size 20 bits, most blocks 100
n = len(bits)
M = 20
N = int(math.floor(n/M))
if N > 99:
N=99
M = int(math.floor(n/N))
if len(bits) < 100:
print("Too little data for test. Supply at least 100 bits")
return False,1.0,None
print(" n = %d" % len(bits))
print(" N = %d" % N)
print(" M = %d" % M)
num_of_blocks = N
block_size = M #int(math.floor(len(bits)/num_of_blocks))
#n = int(block_size * num_of_blocks)
proportions = list()
for i in range(num_of_blocks):
block = bits[i*(block_size):((i+1)*(block_size))]
zeroes,ones = count_ones_zeroes(block)
proportions.append(Fraction(ones,block_size))
chisq = 0.0
for prop in proportions:
chisq += 4.0*block_size*((prop - Fraction(1,2))**2)
p = gammaincc((num_of_blocks/2.0),float(chisq)/2.0)
success = (p >= 0.01)
return (success,p,None)