forked from ReaLLMASIC/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
847 lines (709 loc) · 41.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
import inspect
import sys
import re
import torch
import torch.nn as nn
from torch.nn import functional as F
# Config
from gpt_conf import GPTConfig
# Checkpointing
import torch.utils.checkpoint as checkpoint
# Variations
from variations.softmax_variations import softmax_dictionary
from variations.norm_variations import norm_dictionary
from variations.position_encoding_variations import QuantizedEmbedding, RotaryEmbedding, SymmetricalOverlapAngularPositions, FIRE
from variations.activation_variations import activation_dictionary
from variations.linear_variations import linear_dictionary
from variations.router_variations import router_dictionary
from quantization.quantize import quantize_dictionary, dequantize, fake_quantize_act
def create_shared_param_group(layer_type, config):
# explore MoE layers being reflected symmetrically
shared_size = None
shared_sym = None # if true, output array is symmetrical
layer_block = None
shared_group = []
if layer_type == "mlp":
shared_size = config.shared_mlp_size
shared_sym = config.shared_mlp_sym
elif layer_type == "attn":
shared_size = config.shared_attn_size
shared_sym = config.shared_attn_sym
else:
sys.exit(f"{layer_type} not supported, exiting")
# if attn layer check if using shared fire embeddings
fire_pos_enc = None
if layer_type == "attn" and config.shared_fire_embeddings:
fire_pos_enc = FIRE(num_heads=config.n_head)
for i in range (config.n_layer):
# Create new layer block every "shared_size"
if i % shared_size == 0:
if layer_type == "mlp":
if config.use_moe and i % config.moe_layer_freq == 0:
# this iter is an moe layer iter
layer_block = MoELayer(config)
else:
layer_block = MLP(config)
elif layer_type == "attn":
layer_block = CausalSelfAttention(config, fire_pos_enc=fire_pos_enc)
else:
sys.exit(f"{layer_type} not supported, exiting")
# Add layer block
shared_group.append(layer_block)
# If symmetrical and halfway, then mirror extend and exit
if shared_sym:
# Even
if config.n_layer % 2 == 0:
if i == (config.n_layer // 2 - 1):
# Append going backwards
for j in range(i+1):
shared_group.append(shared_group[i - j])
return shared_group
# Odd
else:
if i == (config.n_layer // 2):
# Append going backwards
for j in range(i):
shared_group.append(shared_group[i - j])
return shared_group
return shared_group
def set_variant(variant, default_variant):
# If variant is false or None, then set to provided default value
if not variant:
return default_variant
return variant
def create_activation_buffers(obj, arg):
arg_str = arg.split("quantize_")[1]
obj.register_buffer(arg_str, None)
obj.register_buffer(f"{arg_str}_scale", None)
obj.register_buffer(f"{arg_str}_zero_point", None)
class CausalSelfAttention(nn.Module):
def __init__(self, config, fire_pos_enc=None):
super().__init__()
if (config.n_kv_group == None):
config.n_kv_group = config.n_head
else:
assert config.n_embd % config.n_kv_group == 0
self.quantization_attn_dict = {}
self.quantization_attn_dict["activations_quant_method"] = config.activations_quant_method
for arg, val in vars(config).items():
# Set each attention Activation precision and method
if arg.startswith("quantize_") and "attn_act" in arg and arg.endswith("_bits"):
self.quantization_attn_dict[arg] = set_variant(val, config.quantize_attn_act_bits)
elif arg.startswith("quantize_") and "attn_act" in arg:
self.quantization_attn_dict[arg] = set_variant(val, config.quantize_attn_act)
if config.store_activations and arg != "quantize_attn_act" and self.quantization_attn_dict[arg]:
create_activation_buffers(self, arg)
# Set each attention Linear precision and method
elif arg.startswith("quantize_") and "linear_attn" in arg and arg.endswith("_bits"):
self.quantization_attn_dict[arg] = set_variant(val, config.quantize_linear_bits)
elif arg.startswith("quantize_") and "linear_attn" in arg and arg.endswith("_method"):
self.quantization_attn_dict[arg] = set_variant(val, config.quantize_linear_method)
self.linear_variant_q = linear_dictionary[set_variant(config.linear_variant_q, config.linear_variant_attn)]
self.linear_variant_k = linear_dictionary[set_variant(config.linear_variant_k, config.linear_variant_attn)]
self.linear_variant_v = linear_dictionary[set_variant(config.linear_variant_v, config.linear_variant_attn)]
self.linear_variant_attn_proj = linear_dictionary[set_variant(config.linear_variant_attn_proj, config.linear_variant_attn)]
# key, query, value projections for all heads, but in a batch
self.c_attn_q = self.linear_variant_q(config.n_embd, config.n_embd, config, self.quantization_attn_dict["quantize_linear_attn_q_method"], self.quantization_attn_dict["quantize_linear_attn_q_bits"], bias=config.bias)
self.n_head = config.n_head
if config.n_kv_group == None:
self.n_kv_group = config.n_head
else:
assert config.n_head % config.n_kv_group == 0
self.n_kv_group = config.n_kv_group
self.kv_dim = (config.n_embd // config.n_head) * self.n_kv_group
self.c_attn_k = self.linear_variant_k(config.n_embd, self.kv_dim, config, self.quantization_attn_dict["quantize_linear_attn_k_method"], self.quantization_attn_dict["quantize_linear_attn_k_bits"], bias=config.bias)
self.c_attn_v = self.linear_variant_v(config.n_embd, self.kv_dim, config, self.quantization_attn_dict["quantize_linear_attn_v_method"], self.quantization_attn_dict["quantize_linear_attn_v_bits"], bias=config.bias)
self.c_proj = self.linear_variant_attn_proj(config.n_embd, config.n_embd, config, self.quantization_attn_dict["quantize_linear_attn_proj_method"], self.quantization_attn_dict["quantize_linear_attn_proj_bits"], bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_embd = config.n_embd
self.dropout = config.dropout
self.window_size = config.window_size
self.n_embd = config.n_embd
self.gate = config.gate
self.use_fire_embeddings = None
if config.use_fire_embeddings:
self.use_fire_embeddings = config.use_fire_embeddings
if fire_pos_enc is not None:
self.fire_pos_enc = fire_pos_enc
print("shared fire")
else:
self.fire_pos_enc = FIRE(num_heads=config.n_head)
print("indiv fire")
# Rotary Positional Embeddings
self.rotary_emb_q = None
self.rotary_emb_k = None
if config.use_rotary_embeddings:
# Note: size is the size of the head dimension
if config.rope_variant == "soap":
self.sym_rot_num_angles = config.sym_rot_num_angles
self.rotary_emb_q = SymmetricalOverlapAngularPositions(config, size=config.n_embd // self.n_head, num_angles=self.sym_rot_num_angles)
self.rotary_emb_k = SymmetricalOverlapAngularPositions(config, size=config.n_embd // self.n_head, num_angles=self.sym_rot_num_angles)
elif config.rope_variant == "rope":
self.rotary_emb_q = RotaryEmbedding(config, size=config.n_embd // self.n_head)
self.rotary_emb_k = RotaryEmbedding(config, size=config.n_embd // self.n_head)
# Softmax Variant Selection
self.softmax_variant_attn = config.softmax_variant_attn
if self.softmax_variant_attn == "softmax":
# Enable flash attention, which is compatible with 'softmax'
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
else:
# Remove flash attention (only compatible with 'softmax')
self.flash = False
# Set softmax_layer_attn to custom softmax alternative
self.softmax_layer_attn = softmax_dictionary[config.softmax_variant_attn](config)
if self.window_size is not None:
# TODO: look into supporting sliding window attn for flash attn
self.flash = False
if self.n_kv_group != self.n_head:
self.flash = False
if self.use_fire_embeddings:
self.flash = False
# Can't use flash attention if we want to manually quantize most input/output activations in attn
for key, val in self.quantization_attn_dict.items():
if key.startswith("quantize_") and val == True:
self.flash = False
break
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
if self.quantization_attn_dict["quantize_attn_act_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
x = fake_quantize_act(self, "attn_act_input", x, num_bits, quant_method)
q = self.c_attn_q(x)
k = self.c_attn_k(x)
v = self.c_attn_v(x)
if self.window_size is not None:
window_mask = torch.ones((1, 1, T, T), device=x.device)
window_mask = torch.triu(window_mask, diagonal=-self.window_size)
window_mask = self.bias[:,:,:T,:T] * window_mask
if self.gate:
if self.n_kv_group == self.n_head:
Gating = nn.Linear(self.n_embd, self.n_embd, bias=True, device=x.device)
gate_ = torch.sigmoid(Gating(x))
q = q * gate_
k = k * gate_
v = v * gate_
else:
# TODO: Test more methods to merge Attention Gates with GQA
# TODO: Evaluate each method's ability to even out parameter sizes
Gating_q = nn.Linear(self.n_embd, self.n_embd, bias=True, device=x.device)
Gating_kv = nn.Linear(self.n_embd, self.kv_dim, bias=True, device=x.device)
gate_qx = Gating_q(x)
gate_q = torch.sigmoid(gate_qx)
gate_kv = torch.sigmoid(Gating_kv(gate_qx))
q = q * gate_q
k = k * gate_kv
v = v * gate_kv
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, n_h, T, hs)
k = k.view(B, T, self.n_kv_group, C // self.n_head).transpose(1, 2) # (B, n_kv, T, hs)
v = v.view(B, T, self.n_kv_group, C // self.n_head).transpose(1, 2) # (B, n_kv, T, hs)
# rotate q and k before evaluating with the heads
if (self.rotary_emb_q is not None) and (self.rotary_emb_k is not None):
q = self.rotary_emb_q(q)
k = self.rotary_emb_k(k)
y = None
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
if self.flash:
# efficient attention using Flash Attention CUDA kernels
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
else:
if self.quantization_attn_dict["quantize_attn_act_qk_mult_q_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_qk_mult_q_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
q = fake_quantize_act(self, "attn_act_qk_mult_q_input", q, num_bits, quant_method)
if self.quantization_attn_dict["quantize_attn_act_qk_mult_k_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_qk_mult_k_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
k = fake_quantize_act(self, "attn_act_qk_mult_k_input", k, num_bits, quant_method)
att = None
# manual implementation of attention
if self.n_head != self.n_kv_group:
k_repeated = k.repeat_interleave(self.n_head // self.n_kv_group, dim=1)
att = (q @ k_repeated.transpose(-2, -1)) / math.sqrt(k.size(-1))
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# apply masks
if self.window_size is not None:
# add mask for sliding window attention
att = att.masked_fill(window_mask == 0, float('-inf'))
else:
# regular lower triangle attention
att = att.masked_fill(self.bias[:,:,:T,:T].to(x.device) == 0, float('-inf'))
# fire position embeddings
if self.use_fire_embeddings is not None:
# add learned fire bias
att = att + self.fire_pos_enc(x)
if self.quantization_attn_dict["quantize_attn_act_softmax_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_softmax_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
att = fake_quantize_act(self, "attn_act_softmax_input", att, num_bits, quant_method)
# softmax variation
if self.softmax_variant_attn != 'softmax':
att = self.softmax_layer_attn(att)
else:
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
if self.quantization_attn_dict["quantize_attn_act_pv_mult_p_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_pv_mult_p_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
att = fake_quantize_act(self, "attn_act_pv_mult_p_input", att, num_bits, quant_method)
if self.quantization_attn_dict["quantize_attn_act_pv_mult_v_input"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_pv_mult_v_input_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
v = fake_quantize_act(self, "attn_act_pv_mult_v_input", v, num_bits, quant_method)
if self.n_head != self.n_kv_group:
v_repeated = v.repeat_interleave(self.n_head // self.n_kv_group, dim=1)
y = att @ v_repeated # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
else:
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
if self.quantization_attn_dict["quantize_attn_act_pv_mult_output"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_pv_mult_output_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
y = fake_quantize_act(self, "attn_act_pv_mult_output", y, num_bits, quant_method)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
if self.quantization_attn_dict["quantize_attn_act_output"]:
num_bits = self.quantization_attn_dict["quantize_attn_act_output_bits"]
quant_method = self.quantization_attn_dict["activations_quant_method"]
y = fake_quantize_act(self, "attn_act_output", y, num_bits, quant_method)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
# Select "mlp variant"
self.mlp_variant = config.mlp_variant
# If "MLP Variant" is KAN, then we skip MLP specific items
if self.mlp_variant == "kan":
self.kan = linear_dictionary["kan"](config.n_embd, config.n_embd, config=config)
else:
# Select activation variant
self.activation_variant = activation_dictionary[config.activation_variant]
# Sets the class of linear for MLP
self.linear_variant_mlp_up = linear_dictionary[set_variant(config.linear_variant_mlp_up, config.linear_variant_mlp)]
self.linear_variant_mlp_down = linear_dictionary[set_variant(config.linear_variant_mlp_down, config.linear_variant_mlp)]
self.quantization_mlp_dict = {}
self.quantization_mlp_dict["activations_quant_method"] = config.activations_quant_method
# Set quantization parameters for MLP
for arg, val in vars(config).items():
# Set MLP Activation precision and quantization method
if arg.startswith("quantize_") and "mlp_act" in arg and arg.endswith("_bits"):
self.quantization_mlp_dict[arg] = set_variant(val, config.quantize_mlp_act_bits)
elif arg.startswith("quantize_") and "mlp_act" in arg:
self.quantization_mlp_dict[arg] = set_variant(val, config.quantize_mlp_act)
if config.store_activations and arg != "quantize_mlp_act" and self.quantization_mlp_dict[arg]:
create_activation_buffers(self, arg)
# Set MLP Linear Weight precision and quantization method
elif arg.startswith("quantize_") and "linear_mlp" in arg and arg.endswith("_bits"):
self.quantization_mlp_dict[arg] = set_variant(val, config.quantize_linear_bits)
elif arg.startswith("quantize_") and "linear_mlp" in arg and arg.endswith("_method"):
self.quantization_mlp_dict[arg] = set_variant(val, config.quantize_linear_method)
# Instantiate Linear Layers
if self.mlp_variant == "mlp":
self.c_fc = self.linear_variant_mlp_up(config.n_embd, 4 * config.n_embd, config, self.quantization_mlp_dict["quantize_linear_mlp_up_method"], self.quantization_mlp_dict["quantize_linear_mlp_up_bits"], bias=config.bias)
self.c_proj = self.linear_variant_mlp_down(4 * config.n_embd, config.n_embd, config, self.quantization_mlp_dict["quantize_linear_mlp_down_method"], self.quantization_mlp_dict["quantize_linear_mlp_down_bits"], bias=config.bias)
elif self.mlp_variant == "swiglu":
self.c_fc_in1 = self.linear_variant_mlp_up(config.n_embd, 4 * config.n_embd, config, self.quantization_mlp_dict["quantize_linear_mlp_up_method"], self.quantization_mlp_dict["quantize_linear_mlp_up_bits"])
self.c_fc_in2 = self.linear_variant_mlp_up(config.n_embd, 4 * config.n_embd, config, self.quantization_mlp_dict["quantize_linear_mlp_up_method"], self.quantization_mlp_dict["quantize_linear_mlp_up_bits"])
self.c_fc_out = self.linear_variant_mlp_down(4 * config.n_embd, config.n_embd, config, self.quantization_mlp_dict["quantize_linear_mlp_down_method"], self.quantization_mlp_dict["quantize_linear_mlp_down_bits"])
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
if self.quantization_mlp_dict["quantize_mlp_act_input"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_input_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x = fake_quantize_act(self, "mlp_act_input", x, num_bits, quant_method)
if self.mlp_variant == "kan":
x = self.kan(x)
elif self.mlp_variant == "mlp":
x = self.c_fc(x)
if self.quantization_mlp_dict["quantize_mlp_act_activation_input"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_activation_input_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x = fake_quantize_act(self, "mlp_act_activation_input", x, num_bits, quant_method)
x = self.activation_variant(x)
if self.quantization_mlp_dict["quantize_mlp_act_activation_output"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_activation_output_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x = fake_quantize_act(self, "mlp_act_activation_output", x, num_bits, quant_method)
x = self.c_proj(x)
elif self.mlp_variant == "swiglu":
x_in1 = self.c_fc_in1(x)
if self.quantization_mlp_dict["quantize_mlp_act_activation_input"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_activation_input_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x_in1 = fake_quantize_act(self, "mlp_act_activation_input", x_in1, num_bits, quant_method)
x_in1 = self.activation_variant(x_in1)
if self.quantization_mlp_dict["quantize_mlp_act_activation_output"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_activation_output_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x_in1 = fake_quantize_act(self, "mlp_act_activation_output", x_in1, num_bits, quant_method)
x_in2 = self.c_fc_in2(x)
x_out = x_in1 * x_in2
x = self.c_fc_out(x_out)
x = self.dropout(x)
if self.quantization_mlp_dict["quantize_mlp_act_output"]:
num_bits = self.quantization_mlp_dict["quantize_mlp_act_output_bits"]
quant_method = self.quantization_mlp_dict["activations_quant_method"]
x = fake_quantize_act(self, "mlp_act_output", x, num_bits, quant_method)
return x
class Block(nn.Module):
def __init__(self, config, mlp=None, attn=None):
super().__init__()
# Initialize and set attn normalization (e.g. rmsnorm)
norm_variant_attn = norm_dictionary[config.norm_variant_attn]
self.ln_1 = norm_variant_attn(config)
if not config.use_parallel_mlp:
self.ln_2 = norm_variant_attn(config)
self.use_post_ln = config.use_post_ln
self.use_parallel_mlp = config.use_parallel_mlp
self.use_gradient_checkpointing = config.use_gradient_checkpointing
# Allow for sharing attn between blocks
if attn is None:
self.attn = CausalSelfAttention(config)
else:
self.attn = attn
# Allow for sharing mlp between blocks
if mlp is None:
self.mlp = MLP(config)
else:
self.mlp = mlp
def forward(self, x):
def custom_forward(*inputs):
x = inputs[0]
if self.use_post_ln:
if self.use_parallel_mlp:
x = self.ln_1(x + self.attn(x) + self.mlp(x))
else:
x = self.ln_1(x + self.attn(x))
x = self.ln_2(x + self.mlp(x))
else:
if self.use_parallel_mlp:
ln_1 = self.ln_1(x)
x = x + self.attn(ln_1) + self.mlp(ln_1)
else:
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
if self.use_gradient_checkpointing and x.requires_grad:
return checkpoint.checkpoint(custom_forward, x, use_reentrant=False)
else:
return custom_forward(x)
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
# Shared Parameters MLP
shared_mlp_array = create_shared_param_group("mlp", config)
# Shared Parameters Attention
shared_attn_array = create_shared_param_group("attn", config)
if config.quantize_wte:
word_embd = QuantizedEmbedding(config.vocab_size, config.n_embd, config.quantize_wte_method, config.quantize_wte_bits)
else:
word_embd = nn.Embedding(config.vocab_size, config.n_embd)
self.transformer = nn.ModuleDict(dict(
wte = word_embd,
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config, mlp=shared_mlp_array[i], attn=shared_attn_array[i]) for i in range(config.n_layer)]),
ln_f = norm_dictionary[config.norm_variant_output](config),
))
if self.config.use_abs_pos_embeddings:
if config.quantize_wpe:
pos_embd = QuantizedEmbedding(config.block_size, config.n_embd, config.quantize_wpe_method, config.quantize_wpe_bits)
else:
pos_embd = nn.Embedding(config.block_size, config.n_embd)
self.transformer['wpe'] = pos_embd
# Select softmax variant for output layer
self.softmax_variant_output = config.softmax_variant_output
if self.softmax_variant_output != "softmax":
self.softmax_layer_output = softmax_dictionary[config.softmax_variant_output](config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# with weight tying when using torch.compile() some warnings get generated:
# "UserWarning: functional_call was passed multiple values for tied weights.
# This behavior is deprecated and will be an error in future versions"
# not 100% sure what this is, so far seems to be harmless. TODO investigate
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding and self.config.use_abs_pos_embeddings:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def update_block_size(self, new_block_size):
# Function to increase block size dynamically
if new_block_size > self.config.block_size:
self.config.block_size = new_block_size
if self.config.use_abs_pos_embeddings:
if self.config.quantize_wpe:
pos_embd = QuantizedEmbedding(new_block_size, self.config.n_embd, self.config.quantize_wpe_method, self.config.quantize_wpe_bits)
else:
pos_embd = nn.Embedding(new_block_size, self.config.n_embd)
self.transformer.wpe = pos_embd
for block in self.transformer.h:
if hasattr(block.attn, 'bias'):
block.attn.bias = torch.tril(torch.ones(new_block_size, new_block_size)).view(1, 1, new_block_size, new_block_size)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=self.config.linear_mean_init, std=self.config.linear_std_init)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=self.config.embedding_mean_init, std=self.config.embedding_std_init)
def update_num_angles(self, num_angles):
"""Update the number of angles for rotary embeddings in all attention layers."""
device = next(self.parameters()).device
for block in self.transformer.h:
if hasattr(block.attn, 'rotary_emb_q') and hasattr(block.attn, 'rotary_emb_k'):
block.attn.rotary_emb_q.update_num_angles(num_angles, device)
block.attn.rotary_emb_k.update_num_angles(num_angles, device)
def update_rope_length(self, rope_length):
"""Update the number of angles for rotary embeddings in all attention layers."""
for block in self.transformer.h:
if hasattr(block.attn, 'rotary_emb_q') and hasattr(block.attn, 'rotary_emb_k'):
block.attn.rotary_emb_q.update_rope_length(rope_length)
block.attn.rotary_emb_k.update_rope_length(rope_length)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
# assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
x = None
if self.config.use_abs_pos_embeddings:
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
else:
x = self.transformer.drop(tok_emb)
x.requires_grad_(True) # Ensure requires_grad is True
for block in self.transformer.h:
if self.config.use_gradient_checkpointing:
x = checkpoint.checkpoint(block, x, use_reentrant=False)
else:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
if self.config.use_abs_pos_embeddings:
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
for block in self.transformer.h:
if hasattr(block.attn, 'bias'):
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
@classmethod
def from_pretrained(cls, config, model_type):
# assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print(f"loading weights from pretrained gpt: {model_type}")
# create a from-scratch initialized minGPT model
model = GPT(config)
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
# NOTE: the assert below will fail because we split out the c_attn linears!
# assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for key in sd_keys_hf:
if any(key.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[key].shape[::-1] == sd[key].shape
with torch.no_grad():
sd[key].copy_(sd_hf[key].t())
elif key.endswith('attn.c_attn.weight') or key.endswith('attn.c_attn.bias'):
# split into c_attn_q/k/v
q, k, v = sd_hf[key].t().split(config.n_embd, dim=0)
q_key_str = key.replace("c_attn", "c_attn_q")
k_key_str = key.replace("c_attn", "c_attn_k")
v_key_str = key.replace("c_attn", "c_attn_v")
sd[q_key_str] = q
sd[k_key_str] = k
sd[v_key_str] = v
else:
# vanilla copy over the other parameters
assert sd_hf[key].shape == sd[key].shape
with torch.no_grad():
sd[key].copy_(sd_hf[key])
return model
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = self.get_num_params()
cfg = self.config
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = None
if self.config.softmax_variant_output != 'softmax':
probs = self.softmax_layer_output(logits)
else:
probs = F.softmax(logits, dim=-1)
assert probs != None
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
@torch.no_grad()
def generate_with_stop(self, idx, max_new_tokens, stop_string, decode, temperature=1.0, top_k=None):
"""
Generate tokens and stop on fixed string match, return the state for further input.
"""
generated_text = ""
buffer = ""
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
next_token_text = decode(idx_next[0].tolist())
generated_text += next_token_text
buffer += next_token_text
# Check if the buffer ends with the stop_string
if buffer.endswith(stop_string):
break
return idx, generated_text
class MoELayer(nn.Module):
""" Mixture of Experts layer to replace FFN (or every other FFN) """
def __init__(self, config):
super().__init__()
self.top_k = config.moe_top_k
# TODO: implement expert capacity throttling
# self.expert_capacity = config.expert_capacity
self.num_experts = config.n_experts
self.router = router_dictionary[config.moe_router_scheme](config)
self.experts = nn.ModuleList([MLP(config) for _ in range(config.n_experts)])
def forward(self, x):
# Assuming x has shape [batch_size, seq_len, n_embd]
batch_size, seq_len, _ = x.shape
gating_output, indices = self.router(x)
# print(f"gating_output.shape: {gating_output.shape}")
# print(f"indices 1 count: {indices}")
final_output = torch.zeros_like(x)
# Flatten the batch and sequence dimensions to treat each token independently
flat_x = x.view(-1, x.size(-1))
# print(f"x.shape() = {x.shape}")
# print(f"flat_x = {flat_x.shape}")
flat_gating_output = gating_output.view(-1, gating_output.size(-1))
# print(f"flat_gating_output.shape = {flat_gating_output.shape}")
# Process each expert in parallel
for i, expert in enumerate(self.experts):
# Create a mask for the inputs where the current expert is in top-k
expert_mask = (indices == i).any(dim=-1)
flat_mask = expert_mask.view(-1)
# print(f"expert_mask shape = {expert_mask.shape}")
# print(f"flat_mask shape = {flat_mask.shape}")
if flat_mask.any():
expert_input = flat_x[flat_mask]
expert_output = expert(expert_input)
# Extract and apply gating scores
gating_scores = flat_gating_output[flat_mask, i].unsqueeze(1)
weighted_output = expert_output * gating_scores
# Update final output additively by indexing and adding
final_output[expert_mask] += weighted_output.squeeze(1)
# print(f"final_output.shape = {final_output.shape}\n")
return final_output