forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vcfroh.c
817 lines (719 loc) · 28.1 KB
/
vcfroh.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/* vcfroh.c -- HMM model for detecting runs of autozygosity.
Copyright (C) 2013-2015 Genome Research Ltd.
Author: Petr Danecek <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <stdio.h>
#include <unistd.h>
#include <getopt.h>
#include <math.h>
#include <htslib/vcf.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include "bcftools.h"
#include "HMM.h"
#define STATE_HW 0 // normal state, follows Hardy-Weinberg allele frequencies
#define STATE_AZ 1 // autozygous state
/** Genetic map */
typedef struct
{
int pos;
double rate;
}
genmap_t;
typedef struct _args_t
{
bcf_srs_t *files;
bcf_hdr_t *hdr;
double t2AZ, t2HW; // P(AZ|HW) and P(HW|AZ) parameters
double unseen_PL, dflt_AF;
char *genmap_fname;
genmap_t *genmap;
int ngenmap, mgenmap, igenmap;
double rec_rate; // constant recombination rate if > 0
hmm_t *hmm;
double *eprob; // emission probs [2*nsites,msites]
uint32_t *sites; // positions [nsites,msites]
int nsites, msites;
int nrids, *rids, *rid_offs; // multiple chroms with vi_training
int32_t *itmp;
int nitmp, mitmp;
float *AFs;
int mAFs;
double pl2p[256], *pdg;
int32_t skip_rid, prev_rid, prev_pos;
int ntot, nused; // some stats to detect if things didn't go awfully wrong
int ismpl, nsmpl; // index of query sample
char *estimate_AF, *sample; // list of samples for AF estimate and query sample
char **argv, *targets_list, *regions_list, *af_fname, *af_tag;
int argc, fake_PLs, snps_only, vi_training;
}
args_t;
void set_tprob_genmap(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data, double *tprob);
void set_tprob_recrate(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data, double *tprob);
void *smalloc(size_t size)
{
void *mem = malloc(size);
if ( !mem ) error("malloc: Could not allocate %d bytes\n", (int)size);
return mem;
}
static void init_data(args_t *args)
{
args->prev_rid = args->skip_rid = -1;
args->hdr = args->files->readers[0].header;
if ( !args->sample )
{
if ( bcf_hdr_nsamples(args->hdr)>1 ) error("Missing the option -s, --sample\n");
args->sample = strdup(args->hdr->samples[0]);
}
if ( !bcf_hdr_nsamples(args->hdr) ) error("No samples in the VCF?\n");
// Set samples
kstring_t str = {0,0,0};
if ( args->estimate_AF && strcmp("-",args->estimate_AF) )
{
int i, n;
char **smpls = hts_readlist(args->estimate_AF, 1, &n);
// Make sure the query sample is included
for (i=0; i<n; i++)
if ( !strcmp(args->sample,smpls[i]) ) break;
// Add the query sample if not present
if ( i!=n ) kputs(args->sample, &str);
for (i=0; i<n; i++)
{
if ( str.l ) kputc(',', &str);
kputs(smpls[i], &str);
free(smpls[i]);
}
free(smpls);
}
else if ( !args->estimate_AF )
kputs(args->sample, &str);
if ( str.l )
{
int ret = bcf_hdr_set_samples(args->hdr, str.s, 0);
if ( ret<0 ) error("Error parsing the list of samples: %s\n", str.s);
else if ( ret>0 ) error("The %d-th sample not found in the VCF\n", ret);
}
if ( args->af_tag )
if ( !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_INFO,bcf_hdr_id2int(args->hdr,BCF_DT_ID,args->af_tag)) )
error("No such INFO tag in the VCF: %s\n", args->af_tag);
args->nsmpl = bcf_hdr_nsamples(args->hdr);
args->ismpl = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, args->sample);
free(str.s);
int i;
for (i=0; i<256; i++) args->pl2p[i] = pow(10., -i/10.);
// Init transition matrix and HMM
double tprob[4];
MAT(tprob,2,STATE_HW,STATE_HW) = 1 - args->t2AZ;
MAT(tprob,2,STATE_HW,STATE_AZ) = args->t2HW;
MAT(tprob,2,STATE_AZ,STATE_HW) = args->t2AZ;
MAT(tprob,2,STATE_AZ,STATE_AZ) = 1 - args->t2HW;
if ( args->genmap_fname )
{
args->hmm = hmm_init(2, tprob, 0);
hmm_set_tprob_func(args->hmm, set_tprob_genmap, args);
}
else if ( args->rec_rate > 0 )
{
args->hmm = hmm_init(2, tprob, 0);
hmm_set_tprob_func(args->hmm, set_tprob_recrate, args);
}
else
args->hmm = hmm_init(2, tprob, 10000);
// print header
printf("# This file was produced by: bcftools roh(%s+htslib-%s)\n", bcftools_version(),hts_version());
printf("# The command line was:\tbcftools %s", args->argv[0]);
for (i=1; i<args->argc; i++)
printf(" %s",args->argv[i]);
printf("\n#\n");
printf("# [1]Chromosome\t[2]Position\t[3]State (0:HW, 1:AZ)\t[4]Quality\n");
}
static void destroy_data(args_t *args)
{
free(args->sites);
free(args->eprob);
free(args->sample);
free(args->rids);
free(args->rid_offs);
hmm_destroy(args->hmm);
bcf_sr_destroy(args->files);
free(args->itmp); free(args->AFs); free(args->pdg);
free(args->genmap);
}
static int load_genmap(args_t *args, bcf1_t *line)
{
if ( !args->genmap_fname ) { args->ngenmap = 0; return 0; }
kstring_t str = {0,0,0};
char *fname = strstr(args->genmap_fname,"{CHROM}");
if ( fname )
{
kputsn(args->genmap_fname, fname - args->genmap_fname, &str);
kputs(bcf_seqname(args->hdr,line), &str);
kputs(fname+7,&str);
fname = str.s;
}
else
fname = args->genmap_fname;
htsFile *fp = hts_open(fname, "rb");
if ( !fp )
{
args->ngenmap = 0;
return -1;
}
hts_getline(fp, KS_SEP_LINE, &str);
if ( strcmp(str.s,"position COMBINED_rate(cM/Mb) Genetic_Map(cM)") )
error("Unexpected header, found:\n\t[%s], but expected:\n\t[position COMBINED_rate(cM/Mb) Genetic_Map(cM)]\n", fname, str.s);
args->ngenmap = args->igenmap = 0;
while ( hts_getline(fp, KS_SEP_LINE, &str) > 0 )
{
args->ngenmap++;
hts_expand(genmap_t,args->ngenmap,args->mgenmap,args->genmap);
genmap_t *gm = &args->genmap[args->ngenmap-1];
char *tmp, *end;
gm->pos = strtol(str.s, &tmp, 10);
if ( str.s==tmp ) error("Could not parse %s: %s\n", fname, str.s);
// skip second column
tmp++;
while ( *tmp && !isspace(*tmp) ) tmp++;
// read the genetic map in cM
gm->rate = strtod(tmp+1, &end);
if ( tmp+1==end ) error("Could not parse %s: %s\n", fname, str.s);
}
if ( !args->ngenmap ) error("Genetic map empty?\n");
int i;
for (i=0; i<args->ngenmap; i++) args->genmap[i].rate /= args->genmap[args->ngenmap-1].rate; // scale to 1
if ( hts_close(fp) ) error("Close failed\n");
free(str.s);
return 0;
}
static double get_genmap_rate(args_t *args, int start, int end)
{
// position i to be equal to or smaller than start
int i = args->igenmap;
if ( args->genmap[i].pos > start )
{
while ( i>0 && args->genmap[i].pos > start ) i--;
}
else
{
while ( i+1<args->ngenmap && args->genmap[i+1].pos < start ) i++;
}
// position j to be equal or larger than end
int j = i;
while ( j+1<args->ngenmap && args->genmap[j].pos < end ) j++;
if ( i==j )
{
args->igenmap = i;
return 0;
}
if ( start < args->genmap[i].pos ) start = args->genmap[i].pos;
if ( end > args->genmap[j].pos ) end = args->genmap[j].pos;
double rate = (args->genmap[j].rate - args->genmap[i].rate)/(args->genmap[j].pos - args->genmap[i].pos) * (end-start);
args->igenmap = j;
return rate;
}
void set_tprob_genmap(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data, double *tprob)
{
args_t *args = (args_t*) data;
double ci = get_genmap_rate(args, pos - prev_pos, pos);
MAT(tprob,2,STATE_HW,STATE_AZ) *= ci;
MAT(tprob,2,STATE_AZ,STATE_HW) *= ci;
MAT(tprob,2,STATE_AZ,STATE_AZ) = 1 - MAT(tprob,2,STATE_HW,STATE_AZ);
MAT(tprob,2,STATE_HW,STATE_HW) = 1 - MAT(tprob,2,STATE_AZ,STATE_HW);
}
void set_tprob_recrate(hmm_t *hmm, uint32_t prev_pos, uint32_t pos, void *data, double *tprob)
{
args_t *args = (args_t*) data;
double ci = (pos - prev_pos) * args->rec_rate;
MAT(tprob,2,STATE_HW,STATE_AZ) *= ci;
MAT(tprob,2,STATE_AZ,STATE_HW) *= ci;
MAT(tprob,2,STATE_AZ,STATE_AZ) = 1 - MAT(tprob,2,STATE_HW,STATE_AZ);
MAT(tprob,2,STATE_HW,STATE_HW) = 1 - MAT(tprob,2,STATE_AZ,STATE_HW);
}
/**
* This function implements the HMM model:
* D = Data, AZ = autozygosity, HW = Hardy-Weinberg (non-autozygosity),
* f = non-ref allele frequency
*
* Emission probabilities:
* oAZ = P_i(D|AZ) = (1-f)*P(D|RR) + f*P(D|AA)
* oHW = P_i(D|HW) = (1-f)^2 * P(D|RR) + f^2 * P(D|AA) + 2*f*(1-f)*P(D|RA)
*
* Transition probabilities:
* tAZ = P(AZ|HW) .. parameter
* tHW = P(HW|AZ) .. parameter
*
* ci = P_i(C) .. probability of cross-over at site i, from genetic map
*
* AZi = P_i(AZ) .. probability of site i being AZ/non-AZ, scaled so that AZi+HWi = 1
* HWi = P_i(HW)
*
* P_i(AZ|HW) = P(AZ|HW) * ci * HW{i-1} = tAZ * ci * (1 - AZ{i-1})
* P_i(HW|AZ) = P(HW|AZ) * ci * AZ{i-1} = tHW * ci * AZ{i-1}
* P_i(AZ|AZ) = 1 - P_i(HW|AZ)
* P_i(HW|HW) = 1 - P_i(AZ|HW)
*
*/
static void flush_viterbi(args_t *args)
{
int i,j;
if ( !args->nsites ) return;
if ( !args->vi_training )
{
// single viterbi pass, one chromsome
hmm_run_viterbi(args->hmm, args->nsites, args->eprob, args->sites);
hmm_run_fwd_bwd(args->hmm, args->nsites, args->eprob, args->sites);
double *fwd = hmm_get_fwd_bwd_prob(args->hmm);
const char *chr = bcf_hdr_id2name(args->hdr,args->prev_rid);
uint8_t *vpath = hmm_get_viterbi_path(args->hmm);
for (i=0; i<args->nsites; i++)
{
int state = vpath[i*2]==STATE_AZ ? 1 : 0;
double *pval = fwd + i*2;
printf("%s\t%d\t%d\t%.1f\n", chr,args->sites[i]+1, state, phred_score(1.0-pval[state]));
}
return;
}
// viterbi training, multiple chromosomes
double t2az_prev, t2hw_prev;
double deltaz, delthw;
int niter = 0;
do
{
double *tprob_arr = hmm_get_tprob(args->hmm);
t2az_prev = MAT(tprob_arr,2,1,0); //args->t2AZ;
t2hw_prev = MAT(tprob_arr,2,0,1); //args->t2HW;
double tcounts[] = { 0,0,0,0 };
for (i=0; i<args->nrids; i++)
{
// run viterbi for each chromosomes. eprob and sites contain
// multiple chromosomes, rid_offs mark the boundaries
int ioff = args->rid_offs[i];
int nsites = (i+1==args->nrids ? args->nsites : args->rid_offs[i+1]) - ioff;
hmm_run_viterbi(args->hmm, nsites, args->eprob+ioff*2, args->sites+ioff);
// what transitions were observed: add to the total counts
uint8_t *vpath = hmm_get_viterbi_path(args->hmm);
for (j=1; j<nsites; j++)
{
// count the number of transitions
int prev_state = vpath[2*(j-1)];
int curr_state = vpath[2*j];
MAT(tcounts,2,curr_state,prev_state) += 1;
}
}
// update the transition matrix
int n = 1;
for (i=0; i<2; i++)
{
for (j=0; j<2; j++) n += MAT(tcounts,2,i,j);
}
for (i=0; i<2; i++)
{
for (j=0; j<2; j++)
{
// no transition to i-th state was observed, set to a small number
if ( !MAT(tcounts,2,i,j) ) MAT(tcounts,2,i,j) = 0.1/n;
else MAT(tcounts,2,i,j) /= n;
}
}
// normalize
for (i=0; i<2; i++)
{
double norm = 0;
for (j=0; j<2; j++) norm += MAT(tcounts,2,j,i);
assert( norm!=0 );
for (j=0; j<2; j++) MAT(tcounts,2,j,i) /= norm;
}
if ( args->genmap_fname || args->rec_rate > 0 )
hmm_set_tprob(args->hmm, tcounts, 0);
else
hmm_set_tprob(args->hmm, tcounts, 10000);
tprob_arr = hmm_get_tprob(args->hmm);
deltaz = fabs(MAT(tprob_arr,2,1,0)-t2az_prev);
delthw = fabs(MAT(tprob_arr,2,0,1)-t2hw_prev);
niter++;
fprintf(stderr,"Viterbi training, iteration %d: dAZ=%e dHW=%e\tP(HW|HW)=%e P(AZ|HW)=%e P(AZ|AZ)=%e P(HW|AZ)=%e\n",
niter,deltaz,delthw,
MAT(tprob_arr,2,STATE_HW,STATE_HW),MAT(tprob_arr,2,STATE_AZ,STATE_HW),
MAT(tprob_arr,2,STATE_AZ,STATE_AZ),MAT(tprob_arr,2,STATE_HW,STATE_AZ));
}
while ( deltaz > 0.0 || delthw > 0.0 );
double *tprob_arr = hmm_get_tprob(args->hmm);
fprintf(stderr, "Viterbi training converged in %d iterations to P(HW|HW)=%e P(AZ|HW)=%e P(AZ|AZ)=%e P(HW|AZ)=%e\n", niter,
MAT(tprob_arr,2,STATE_HW,STATE_HW),MAT(tprob_arr,2,STATE_AZ,STATE_HW),
MAT(tprob_arr,2,STATE_AZ,STATE_AZ),MAT(tprob_arr,2,STATE_HW,STATE_AZ));
// output the results
for (i=0; i<args->nrids; i++)
{
int ioff = args->rid_offs[i];
int nsites = (i+1==args->nrids ? args->nsites : args->rid_offs[i+1]) - ioff;
hmm_run_viterbi(args->hmm, nsites, args->eprob+ioff*2, args->sites+ioff);
hmm_run_fwd_bwd(args->hmm, nsites, args->eprob+ioff*2, args->sites+ioff);
uint8_t *vpath = hmm_get_viterbi_path(args->hmm);
double *fwd = hmm_get_fwd_bwd_prob(args->hmm);
const char *chr = bcf_hdr_id2name(args->hdr,args->rids[i]);
for (j=0; j<nsites; j++)
{
int state = vpath[j*2];
double pval = fwd[j*2 + state];
printf("%s\t%d\t%d\t%e\n", chr,args->sites[ioff+j]+1,state==STATE_AZ ? 1 : 0, pval);
}
}
}
static void push_rid(args_t *args, int rid)
{
args->nrids++;
args->rids = (int*) realloc(args->rids, args->nrids*sizeof(int));
args->rid_offs = (int*) realloc(args->rid_offs, args->nrids*sizeof(int));
args->rids[ args->nrids-1 ] = rid;
args->rid_offs[ args->nrids-1 ] = args->nsites;
}
int read_AF(bcf_sr_regions_t *tgt, bcf1_t *line, double *alt_freq)
{
if ( tgt->nals != line->n_allele ) return -1; // number of alleles does not match
int i;
for (i=0; i<tgt->nals; i++)
if ( strcmp(line->d.allele[i],tgt->als[i]) ) break; // we could be smarter, see vcmp
if ( i<tgt->nals ) return -1;
char *tmp, *str = tgt->line.s;
i = 0;
while ( *str && i<3 )
{
if ( *str=='\t' ) i++;
str++;
}
*alt_freq = strtod(str, &tmp);
if ( *tmp && !isspace(*tmp) )
{
if ( str[0]=='.' && (!str[1] || isspace(str[1])) ) return -1; // missing value
error("Could not parse: [%s]\n", tgt->line.s);
}
if ( *alt_freq<0 || *alt_freq>1 ) error("Could not parse AF: [%s]\n", tgt->line.s);
return 0;
}
int estimate_AF(args_t *args, bcf1_t *line, double *alt_freq)
{
if ( !args->nitmp )
{
args->nitmp = bcf_get_genotypes(args->hdr, line, &args->itmp, &args->mitmp);
if ( args->nitmp != 2*args->nsmpl ) return -1; // not diploid?
args->nitmp /= args->nsmpl;
}
int i, nalt = 0, nref = 0;
for (i=0; i<args->nsmpl; i++)
{
int32_t *gt = &args->itmp[i*args->nitmp];
if ( bcf_gt_is_missing(gt[0]) || bcf_gt_is_missing(gt[1]) ) continue;
if ( bcf_gt_allele(gt[0]) ) nalt++;
else nref++;
if ( bcf_gt_allele(gt[1]) ) nalt++;
else nref++;
}
if ( !nalt && !nref ) return -1;
*alt_freq = (double)nalt / (nalt + nref);
return 0;
}
int parse_line(args_t *args, bcf1_t *line, double *alt_freq, double *pdg)
{
args->nitmp = 0;
// Set allele frequency
int ret;
if ( args->af_tag )
{
// Use an INFO tag provided by the user
ret = bcf_get_info_float(args->hdr, line, args->af_tag, &args->AFs, &args->mAFs);
if ( ret==1 )
*alt_freq = args->AFs[0];
if ( ret==-2 )
error("Type mismatch for INFO/%s tag at %s:%d\n", args->af_tag, bcf_seqname(args->hdr,line), line->pos+1);
}
else if ( args->af_fname )
{
// Read AF from a file
ret = read_AF(args->files->targets, line, alt_freq);
}
else
{
// Use GTs or AC/AN: GTs when AC/AN not present or when GTs explicitly requested by --estimate-AF
ret = -1;
if ( !args->estimate_AF )
{
int AC = -1, AN = 0;
ret = bcf_get_info_int32(args->hdr, line, "AN", &args->itmp, &args->mitmp);
if ( ret==1 )
{
AN = args->itmp[0];
ret = bcf_get_info_int32(args->hdr, line, "AC", &args->itmp, &args->mitmp);
if ( ret>0 )
AC = args->itmp[0];
}
if ( AN<=0 || AC<0 )
ret = -1;
else
*alt_freq = (double) AC/AN;
}
if ( ret==-1 )
ret = estimate_AF(args, line, alt_freq); // reads GTs into args->itmp
}
if ( ret<0 ) return ret;
if ( *alt_freq==0.0 )
{
if ( args->dflt_AF==0 ) return -1; // we skip sites with AF=0
*alt_freq = args->dflt_AF;
}
// Set P(D|G)
if ( args->fake_PLs )
{
if ( !args->nitmp )
{
args->nitmp = bcf_get_genotypes(args->hdr, line, &args->itmp, &args->mitmp);
if ( args->nitmp != 2*args->nsmpl ) return -1; // not diploid?
args->nitmp /= args->nsmpl;
}
int32_t *gt = &args->itmp[args->ismpl*args->nitmp];
if ( bcf_gt_is_missing(gt[0]) || bcf_gt_is_missing(gt[1]) ) return -1;
int a = bcf_gt_allele(gt[0]);
int b = bcf_gt_allele(gt[1]);
if ( a!=b )
{
pdg[0] = pdg[2] = args->unseen_PL;
pdg[1] = 1 - 2*args->unseen_PL;
}
else if ( a==0 )
{
pdg[0] = 1 - 2*args->unseen_PL;
pdg[1] = pdg[2] = args->unseen_PL;
}
else
{
pdg[0] = pdg[1] = args->unseen_PL;
pdg[2] = 1 - 2*args->unseen_PL;
}
}
else
{
args->nitmp = bcf_get_format_int32(args->hdr, line, "PL", &args->itmp, &args->mitmp);
if ( args->nitmp != args->nsmpl*line->n_allele*(line->n_allele+1)/2. ) return -1; // not diploid?
args->nitmp /= args->nsmpl;
int32_t *pl = &args->itmp[args->ismpl*args->nitmp];
pdg[0] = pl[0] < 256 ? args->pl2p[ pl[0] ] : 1.0;
pdg[1] = pl[1] < 256 ? args->pl2p[ pl[1] ] : 1.0;
pdg[2] = pl[2] < 256 ? args->pl2p[ pl[2] ] : 1.0;
double sum = pdg[0] + pdg[1] + pdg[2];
if ( !sum ) return -1;
pdg[0] /= sum;
pdg[1] /= sum;
pdg[2] /= sum;
}
return 0;
}
static void vcfroh(args_t *args, bcf1_t *line)
{
// Are we done?
if ( !line )
{
flush_viterbi(args);
return;
}
args->ntot++;
// Skip unwanted lines
if ( line->rid == args->skip_rid ) return;
if ( line->n_allele==1 ) return; // no ALT allele
if ( line->n_allele!=2 ) return; // only biallelic sites
if ( args->snps_only && !bcf_is_snp(line) ) return;
// Initialize genetic map
int skip_rid = 0;
if ( args->prev_rid<0 )
{
args->prev_rid = line->rid;
args->prev_pos = line->pos;
skip_rid = load_genmap(args, line);
if ( !skip_rid && args->vi_training ) push_rid(args, line->rid);
}
// New chromosome?
if ( args->prev_rid!=line->rid )
{
skip_rid = load_genmap(args, line);
if ( args->vi_training )
{
if ( !skip_rid ) push_rid(args, line->rid);
}
else
{
flush_viterbi(args);
args->nsites = 0;
}
args->prev_rid = line->rid;
args->prev_pos = line->pos;
}
if ( skip_rid )
{
fprintf(stderr,"Skipping the sequence, no genmap for %s\n", bcf_seqname(args->hdr,line));
args->skip_rid = line->rid;
return;
}
if ( args->prev_pos > line->pos ) error("The file is not sorted?!\n");
args->prev_rid = line->rid;
args->prev_pos = line->pos;
// Ready for the new site
int m = args->msites;
hts_expand(uint32_t,args->nsites+1,args->msites,args->sites);
if ( args->msites!=m )
args->eprob = (double*) realloc(args->eprob,sizeof(double)*args->msites*2);
// Set likelihoods and alternate allele frequencies
double alt_freq, pdg[3];
if ( parse_line(args, line, &alt_freq, pdg)<0 ) return; // something went wrong
args->nused++;
// Calculate emission probabilities P(D|AZ) and P(D|HW)
double *eprob = &args->eprob[2*args->nsites];
eprob[STATE_AZ] = pdg[0]*(1-alt_freq) + pdg[2]*alt_freq;
eprob[STATE_HW] = pdg[0]*(1-alt_freq)*(1-alt_freq) + 2*pdg[1]*(1-alt_freq)*alt_freq + pdg[2]*alt_freq*alt_freq;
args->sites[args->nsites] = line->pos;
args->nsites++;
}
static void usage(args_t *args)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: HMM model for detecting runs of autozygosity.\n");
fprintf(stderr, "Usage: bcftools roh [options] <in.vcf.gz>\n");
fprintf(stderr, "\n");
fprintf(stderr, "General Options:\n");
fprintf(stderr, " --AF-dflt <float> if AF is not known, use this allele frequency [skip]\n");
fprintf(stderr, " --AF-tag <TAG> use TAG for allele frequency\n");
fprintf(stderr, " --AF-file <file> read allele frequencies from file (CHR\\tPOS\\tREF,ALT\\tAF)\n");
fprintf(stderr, " -e, --estimate-AF <file> calculate AC,AN counts on the fly, using either all samples (\"-\") or samples listed in <file>\n");
fprintf(stderr, " -G, --GTs-only <float> use GTs, ignore PLs, use <float> for PL of unseen genotypes. Safe value to use is 30 to account for GT errors.\n");
fprintf(stderr, " -I, --skip-indels skip indels as their genotypes are enriched for errors\n");
fprintf(stderr, " -m, --genetic-map <file> genetic map in IMPUTE2 format, single file or mask, where string \"{CHROM}\" is replaced with chromosome name\n");
fprintf(stderr, " -M, --rec-rate <float> constant recombination rate per bp\n");
fprintf(stderr, " -r, --regions <region> restrict to comma-separated list of regions\n");
fprintf(stderr, " -R, --regions-file <file> restrict to regions listed in a file\n");
fprintf(stderr, " -s, --sample <sample> sample to analyze\n");
fprintf(stderr, " -t, --targets <region> similar to -r but streams rather than index-jumps\n");
fprintf(stderr, " -T, --targets-file <file> similar to -R but streams rather than index-jumps\n");
fprintf(stderr, "\n");
fprintf(stderr, "HMM Options:\n");
fprintf(stderr, " -a, --hw-to-az <float> P(AZ|HW) transition probability from HW (Hardy-Weinberg) to AZ (autozygous) state [6.7e-8]\n");
fprintf(stderr, " -H, --az-to-hw <float> P(HW|AZ) transition probability from AZ to HW state [5e-9]\n");
fprintf(stderr, " -V, --viterbi-training perform Viterbi training to estimate transition probabilities\n");
fprintf(stderr, "\n");
exit(1);
}
int main_vcfroh(int argc, char *argv[])
{
int c;
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->files = bcf_sr_init();
args->t2AZ = 6.7e-8;
args->t2HW = 5e-9;
args->rec_rate = 0;
int regions_is_file = 0, targets_is_file = 0;
static struct option loptions[] =
{
{"AF-tag",1,0,0},
{"AF-file",1,0,1},
{"AF-dflt",1,0,2},
{"estimate-AF",1,0,'e'},
{"GTs-only",1,0,'G'},
{"sample",1,0,'s'},
{"hw-to-az",1,0,'a'},
{"az-to-hw",1,0,'H'},
{"viterbi-training",0,0,'V'},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"genetic-map",1,0,'m'},
{"rec-rate",1,0,'M'},
{"skip-indels",0,0,'I'},
{0,0,0,0}
};
int naf_opts = 0;
char *tmp;
while ((c = getopt_long(argc, argv, "h?r:R:t:T:H:a:s:m:M:G:Ia:e:V",loptions,NULL)) >= 0) {
switch (c) {
case 0: args->af_tag = optarg; naf_opts++; break;
case 1: args->af_fname = optarg; naf_opts++; break;
case 2:
args->dflt_AF = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: --AF-dflt %s\n", optarg);
break;
case 'e': args->estimate_AF = optarg; naf_opts++; break;
case 'I': args->snps_only = 1; break;
case 'G':
args->fake_PLs = 1;
args->unseen_PL = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -G %s\n", optarg);
args->unseen_PL = pow(10,-args->unseen_PL/10.);
break;
case 'm': args->genmap_fname = optarg; break;
case 'M':
args->rec_rate = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -M %s\n", optarg);
break;
case 's': args->sample = strdup(optarg); break;
case 'a':
args->t2AZ = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -a %s\n", optarg);
break;
case 'H':
args->t2HW = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -H %s\n", optarg);
break;
case 't': args->targets_list = optarg; break;
case 'T': args->targets_list = optarg; targets_is_file = 1; break;
case 'r': args->regions_list = optarg; break;
case 'R': args->regions_list = optarg; regions_is_file = 1; break;
case 'V': args->vi_training = 1; break;
case 'h':
case '?': usage(args); break;
default: error("Unknown argument: %s\n", optarg);
}
}
if ( argc<optind+1 ) usage(args);
if ( args->t2AZ<0 || args->t2AZ>1 ) error("Error: The parameter --hw-to-az is not in [0,1]\n", args->t2AZ);
if ( args->t2HW<0 || args->t2HW>1 ) error("Error: The parameter --az-to-hw is not in [0,1]\n", args->t2HW);
if ( naf_opts>1 ) error("Error: The options --AF-tag, --AF-file and -e are mutually exclusive\n");
if ( args->af_fname && args->targets_list ) error("Error: The options --AF-file and -t are mutually exclusive\n");
if ( args->regions_list )
{
if ( bcf_sr_set_regions(args->files, args->regions_list, regions_is_file)<0 )
error("Failed to read the regions: %s\n", args->regions_list);
}
if ( args->targets_list )
{
if ( bcf_sr_set_targets(args->files, args->targets_list, targets_is_file, 0)<0 )
error("Failed to read the targets: %s\n", args->targets_list);
}
if ( args->af_fname )
{
if ( bcf_sr_set_targets(args->files, args->af_fname, 1, 3)<0 )
error("Failed to read the targets: %s\n", args->af_fname);
}
if ( !bcf_sr_add_reader(args->files, argv[optind]) ) error("Failed to open %s: %s\n", argv[optind],bcf_sr_strerror(args->files->errnum));
init_data(args);
while ( bcf_sr_next_line(args->files) )
{
vcfroh(args, args->files->readers[0].buffer[0]);
}
vcfroh(args, NULL);
fprintf(stderr,"Number of lines: total/processed: %d/%d\n", args->ntot,args->nused);
destroy_data(args);
free(args);
return 0;
}