forked from D-Nilsson/GRFP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
219 lines (174 loc) · 9.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse, glob, os, cv2, sys, pickle, random
import numpy as np
import tensorflow as tf
import config as cfg
from models.stgru import STGRU
from models.lrr import LRR
from models.dilation import dilation10network
from models.flownet2 import Flownet2
from models.flownet1 import Flownet1
from tensorflow.python.framework import ops
bilinear_warping_module = tf.load_op_library('./misc/bilinear_warping.so')
@ops.RegisterGradient("BilinearWarping")
def _BilinearWarping(op, grad):
return bilinear_warping_module.bilinear_warping_grad(grad, op.inputs[0], op.inputs[1])
class DataLoader():
def __init__(self, im_size, nbr_frames):
self.im_size = im_size
self.dataset_size = [1024, 2048]
self.nbr_frames = nbr_frames
self.L = glob.glob(os.path.join(cfg.cityscapes_dir, 'gtFine', 'train', "*", "*labelTrainIds.png"))
random.shuffle(self.L)
self.idx = 0
def get_next_sequence(self):
H, W = self.dataset_size
h, w = self.im_size
offset = [np.random.randint(H - h),
np.random.randint(W - w)]
i0, j0 = offset
i1, j1 = i0 + h, j0 + w
im_path = self.L[self.idx % len(self.L)]
self.idx += 1
parts = im_path.split('/')[-1].split('_')
city, seq, frame = parts[0], parts[1], parts[2]
images = []
gt = cv2.imread(im_path, 0)[i0:i1, j0:j1]
for dt in range(-self.nbr_frames + 1, 1):
t = int(frame) + dt
frame_path = os.path.join(cfg.cityscapes_video_dir, 'leftImg8bit_sequence', 'train',
city, ("%s_%s_%06d_leftImg8bit.png" % (city, seq, t)))
images.append(cv2.imread(frame_path, 1).astype(np.float32)[i0:i1,j0:j1][np.newaxis,...])
return images, gt
def train(args):
nbr_classes = 19
# learning rates for the GRU and the static segmentation networks, respectively
learning_rate = 2e-5
static_learning_rate = 2e-12
# The total number of iterations and when the static network should start being refined
nbr_iterations = 10000
t0_dilation_net = 5000
im_size = [512, 512]
image_mean = [72.39,82.91,73.16] # the mean is automatically subtracted in some modules e.g. flownet2, so be careful
f = open('misc/cityscapes_labels.pckl')
cs_id2trainid, cs_id2name = pickle.load(f)
f.close()
assert args.static in ['dilation', 'lrr'], "Only dilation and LRR are supported for now."
if args.flow == 'flownet2':
with tf.variable_scope('flow'):
flow_network = Flownet2(bilinear_warping_module)
flow_img0 = tf.placeholder(tf.float32)
flow_img1 = tf.placeholder(tf.float32)
flow_tensor = flow_network(flow_img0, flow_img1, flip=True)
elif args.flow == 'flownet1':
with tf.variable_scope('flow'):
flow_network = Flownet1()
flow_img0 = tf.placeholder(tf.float32)
flow_img1 = tf.placeholder(tf.float32)
flow_tensor = flow_network.get_output_tensor(flow_img0, flow_img1, im_size)
RNN = STGRU([nbr_classes, im_size[0], im_size[1]], [7, 7], bilinear_warping_module)
gru_opt, gru_loss, gru_prediction, gru_learning_rate, \
gru_input_images_tensor, gru_input_flow_tensor, \
gru_input_segmentation_tensor, gru_targets = RNN.get_optimizer(args.frames)
unary_grad_op = tf.gradients(gru_loss, gru_input_segmentation_tensor)
if args.static == 'lrr':
static_input = tf.placeholder(tf.float32)
static_network = LRR()
static_output = static_network(static_input)
unary_opt, unary_dLdy = static_network.get_optimizer(static_input, static_output, static_learning_rate)
elif args.static == 'dilation':
static_input = tf.placeholder(tf.float32)
static_network = dilation10network()
static_output = static_network.get_output_tensor(static_input, im_size)
data_loader = DataLoader(im_size, args.frames)
loss_history = np.zeros(nbr_iterations)
loss_history_smoothed = np.zeros(nbr_iterations)
vars_trainable = [k for k in tf.trainable_variables() if not k.name.startswith('flow/')]
vars_static = [k for k in vars_trainable if not k in RNN.weights.values()]
loader_static = tf.train.Saver(vars_static)
saver = tf.train.Saver(vars_trainable)
if args.flow in ['flownet1', 'flownet2']:
saver_fn = tf.train.Saver([k for k in tf.trainable_variables() if k.name.startswith('flow/')])
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
if args.static == 'lrr':
loader_static.restore(sess, './checkpoints/lrr_pretrained')
elif args.static == 'dilation':
assert False, "Pretrained dilation model will soon be released."
saver.restore(sess, './checkpoints/dilation_grfp')
if args.flow == 'flownet1':
saver_fn.restore(sess, './checkpoints/flownet1')
elif args.flow == 'flownet2':
saver_fn.restore(sess, './checkpoints/flownet2')
for training_it in range(nbr_iterations):
images, ground_truth = data_loader.get_next_sequence()
# Optical flow
optflow = []
for frame in range(1, args.frames):
im, last_im = images[frame], images[frame-1]
if args.flow == 'flownet2':
flow = sess.run(flow_tensor, feed_dict={flow_img0: im, flow_img1: last_im})
elif args.flow == 'flownet1':
flow = sess.run(flow_tensor, feed_dict={flow_img0: im, flow_img1: last_im})
flow = flow[...,(1, 0)]
elif args.flow == 'farneback':
im_gray = cv2.cvtColor(im[0], cv2.COLOR_BGR2GRAY)
last_im_gray = cv2.cvtColor(last_im[0], cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(im_gray, last_im_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
flow = flow[...,(1, 0)]
flow = flow[np.newaxis,...]
optflow.append(flow)
# Static segmentation
static_segm = []
for frame in range(args.frames):
im = images[frame]
if args.static == 'dilation':
# augment a 186x186 border around the image and subtract the mean
im_aug = cv2.copyMakeBorder(im[0], 186, 186, 186, 186, cv2.BORDER_REFLECT_101)
im_aug = im_aug - image_mean
im_aug = im_aug[np.newaxis,...]
x = sess.run(static_output, feed_dict={static_input: im_aug})
elif args.static == 'lrr':
x = sess.run(static_output, feed_dict={static_input: im})
static_segm.append(x)
# GRFP
rnn_input = {
gru_learning_rate: learning_rate,
gru_input_images_tensor: np.stack(images),
gru_input_flow_tensor: np.stack(optflow),
gru_input_segmentation_tensor: np.stack(static_segm),
gru_targets: ground_truth,
}
_, loss, pred, unary_grads = sess.run([gru_opt, gru_loss,
gru_prediction, unary_grad_op], feed_dict=rnn_input)
loss_history[training_it] = loss
if training_it < 300:
loss_history_smoothed[training_it] = np.mean(loss_history[0:training_it+1])
else:
loss_history_smoothed[training_it] = 0.997*loss_history_smoothed[training_it-1] + 0.003*loss
# Refine the static network?
# The reason that a two-stage training routine is used
# is because there is not enough GPU memory (with a 12 GB Titan X)
# to do it in one pass.
if training_it+1 > t0_dilation_net:
for k in range(len(images)-3, len(images)):
g = unary_grads[0][k]
im = images[k]
_ = sess.run([unary_opt], feed_dict={
static_input: im,
unary_dLdy: g
})
if training_it > 0 and (training_it+1) % 1000 == 0:
saver.save(sess, './checkpoints/%s_%s_it%d' % (args.static, args.flow, training_it+1))
if (training_it+1) % 200 == 0:
print("Iteration %d/%d: Loss %.3f" % (training_it+1, nbr_iterations, loss_history_smoothed[training_it]))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Tran GRFP on the CityScapes training set.')
parser.add_argument('--static', help='Which static network to use.', required=True)
parser.add_argument('--flow', help='Which optical flow method to use.', required=True)
parser.add_argument('--frames', type=int, help='Number of frames to use.', default=5, required=False)
args = parser.parse_args()
assert args.flow in ['flownet1', 'flownet2', 'farneback'], "Unknown flow method %s." % args.flow
assert args.static in ['dilation', 'dilation_grfp', 'lrr', 'lrr_grfp'], "Unknown static method %s." % args.static
assert args.frames >= 1 and args.frames <= 20, "The number of frames must be between 1 and 20."
train(args)