-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy patheasyOpenPose.cpp
770 lines (682 loc) · 23.8 KB
/
easyOpenPose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
#ifdef USE_OPENCV
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <functional>
using namespace cv;
using namespace std;
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
// Use op::round/max/min for basic types (int, char, long, float, double, etc). Never with classes! std:: alternatives uses 'const T&' instead of 'const T' as argument.
// E.g. std::round is really slow (~300 ms vs ~10 ms when I individually apply it to each element of a whole image array (e.g. in floatPtrToUCharCvMat)
// Round functions
// Signed
template<typename T>
inline char charRound(const T a)
{
return char(a+0.5f);
}
template<typename T>
inline signed char sCharRound(const T a)
{
return (signed char)(a+0.5f);
}
template<typename T>
inline int intRound(const T a)
{
return int(a+0.5f);
}
template<typename T>
inline long longRound(const T a)
{
return long(a+0.5f);
}
template<typename T>
inline long long longLongRound(const T a)
{
return (long long)(a+0.5f);
}
// Unsigned
template<typename T>
inline unsigned char uCharRound(const T a)
{
return (unsigned char)(a+0.5f);
}
template<typename T>
inline unsigned int uIntRound(const T a)
{
return (unsigned int)(a+0.5f);
}
template<typename T>
inline unsigned long ulongRound(const T a)
{
return (unsigned long)(a+0.5f);
}
template<typename T>
inline unsigned long long uLongLongRound(const T a)
{
return (unsigned long long)(a+0.5f);
}
// Max/min functions
template<typename T>
inline T fastMax(const T a, const T b)
{
return (a > b ? a : b);
}
template<typename T>
inline T fastMin(const T a, const T b)
{
return (a < b ? a : b);
}
template<class T>
inline T fastTruncate(T value, T min = 0, T max = 1)
{
return fastMin(max, fastMax(min, value));
}
struct BlobData{
int count;
float* list;
int num;
int channels;
int height;
int width;
int capacity_count; //保留空间的元素个数长度,字节数请 * sizeof(float)
};
#define POSE_COCO_COLORS_RENDER_GPU \
255.f, 0.f, 85.f, \
255.f, 0.f, 0.f, \
255.f, 85.f, 0.f, \
255.f, 170.f, 0.f, \
255.f, 255.f, 0.f, \
170.f, 255.f, 0.f, \
85.f, 255.f, 0.f, \
0.f, 255.f, 0.f, \
0.f, 255.f, 85.f, \
0.f, 255.f, 170.f, \
0.f, 255.f, 255.f, \
0.f, 170.f, 255.f, \
0.f, 85.f, 255.f, \
0.f, 0.f, 255.f, \
255.f, 0.f, 170.f, \
170.f, 0.f, 255.f, \
255.f, 0.f, 255.f, \
85.f, 0.f, 255.f
const std::vector<float> POSE_COCO_COLORS_RENDER{ POSE_COCO_COLORS_RENDER_GPU };
const std::vector<unsigned int> POSE_COCO_PAIRS_RENDER{1, 2, 1, 5, 2, 3, 3, 4, 5, 6, 6, 7, 1, 8, 8, 9, 9, 10, 1, 11, 11, 12, 12, 13, 1, 0, 0, 14, 14, 16, 0, 15, 15, 17};
const unsigned int POSE_MAX_PEOPLE = 96;
//656x368
Mat getImage(const Mat& im, Size baseSize = Size(656, 368), float* scale = 0){
int w = baseSize.width;
int h = baseSize.height;
int nh = h;
float s = h / (float)im.rows;;
int nw = im.cols * s;
if (nw > w){
nw = w;
s = w / (float)im.cols;
nh = im.rows * s;
}
if (scale)*scale = 1 / s;
Rect dst(0, 0, nw, nh);
Mat bck = Mat::zeros(h, w, CV_8UC3);
resize(im, bck(dst), Size(nw, nh));
return bck;
}
//根据得到的结果,连接身体区域
void connectBodyPartsCpu(vector<float>& poseKeypoints, const float* const heatMapPtr, const float* const peaksPtr,
const Size& heatMapSize, const int maxPeaks, const int interMinAboveThreshold,
const float interThreshold, const int minSubsetCnt, const float minSubsetScore, const float scaleFactor, vector<int>& keypointShape)
{
keypointShape.resize(3);
const std::vector<unsigned int> POSE_COCO_PAIRS{ 1, 2, 1, 5, 2, 3, 3, 4, 5, 6, 6, 7, 1, 8, 8, 9, 9, 10, 1, 11, 11, 12, 12, 13, 1, 0, 0, 14, 14, 16, 0, 15, 15, 17, 2, 16, 5, 17 };
const std::vector<unsigned int> POSE_COCO_MAP_IDX{ 31, 32, 39, 40, 33, 34, 35, 36, 41, 42, 43, 44, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 47, 48, 49, 50, 53, 54, 51, 52, 55, 56, 37, 38, 45, 46 };
const auto& bodyPartPairs = POSE_COCO_PAIRS;
const auto& mapIdx = POSE_COCO_MAP_IDX;
const auto numberBodyParts = 18;
const auto numberBodyPartPairs = bodyPartPairs.size() / 2;
std::vector<std::pair<std::vector<int>, double>> subset; // Vector<int> = Each body part + body parts counter; double = subsetScore
const auto subsetCounterIndex = numberBodyParts;
const auto subsetSize = numberBodyParts + 1;
const auto peaksOffset = 3 * (maxPeaks + 1);
const auto heatMapOffset = heatMapSize.area();
for (auto pairIndex = 0u; pairIndex < numberBodyPartPairs; pairIndex++)
{
const auto bodyPartA = bodyPartPairs[2 * pairIndex];
const auto bodyPartB = bodyPartPairs[2 * pairIndex + 1];
const auto* candidateA = peaksPtr + bodyPartA*peaksOffset;
const auto* candidateB = peaksPtr + bodyPartB*peaksOffset;
const auto nA = intRound(candidateA[0]);
const auto nB = intRound(candidateB[0]);
// add parts into the subset in special case
if (nA == 0 || nB == 0)
{
// Change w.r.t. other
if (nA == 0) // nB == 0 or not
{
for (auto i = 1; i <= nB; i++)
{
bool num = false;
const auto indexB = bodyPartB;
for (auto j = 0u; j < subset.size(); j++)
{
const auto off = (int)bodyPartB*peaksOffset + i * 3 + 2;
if (subset[j].first[indexB] == off)
{
num = true;
break;
}
}
if (!num)
{
std::vector<int> rowVector(subsetSize, 0);
rowVector[bodyPartB] = bodyPartB*peaksOffset + i * 3 + 2; //store the index
rowVector[subsetCounterIndex] = 1; //last number in each row is the parts number of that person
const auto subsetScore = candidateB[i * 3 + 2]; //second last number in each row is the total score
subset.emplace_back(std::make_pair(rowVector, subsetScore));
}
}
}
else // if (nA != 0 && nB == 0)
{
for (auto i = 1; i <= nA; i++)
{
bool num = false;
const auto indexA = bodyPartA;
for (auto j = 0u; j < subset.size(); j++)
{
const auto off = (int)bodyPartA*peaksOffset + i * 3 + 2;
if (subset[j].first[indexA] == off)
{
num = true;
break;
}
}
if (!num)
{
std::vector<int> rowVector(subsetSize, 0);
rowVector[bodyPartA] = bodyPartA*peaksOffset + i * 3 + 2; //store the index
rowVector[subsetCounterIndex] = 1; //last number in each row is the parts number of that person
const auto subsetScore = candidateA[i * 3 + 2]; //second last number in each row is the total score
subset.emplace_back(std::make_pair(rowVector, subsetScore));
}
}
}
}
else // if (nA != 0 && nB != 0)
{
std::vector<std::tuple<double, int, int>> temp;
const auto numInter = 10;
const auto* const mapX = heatMapPtr + mapIdx[2 * pairIndex] * heatMapOffset;
const auto* const mapY = heatMapPtr + mapIdx[2 * pairIndex + 1] * heatMapOffset;
for (auto i = 1; i <= nA; i++)
{
for (auto j = 1; j <= nB; j++)
{
const auto dX = candidateB[j * 3] - candidateA[i * 3];
const auto dY = candidateB[j * 3 + 1] - candidateA[i * 3 + 1];
const auto normVec = float(std::sqrt(dX*dX + dY*dY));
// If the peaksPtr are coincident. Don't connect them.
if (normVec > 1e-6)
{
const auto sX = candidateA[i * 3];
const auto sY = candidateA[i * 3 + 1];
const auto vecX = dX / normVec;
const auto vecY = dY / normVec;
auto sum = 0.;
auto count = 0;
for (auto lm = 0; lm < numInter; lm++)
{
const auto mX = fastMin(heatMapSize.width - 1, intRound(sX + lm*dX / numInter));
const auto mY = fastMin(heatMapSize.height - 1, intRound(sY + lm*dY / numInter));
//checkGE(mX, 0, "", __LINE__, __FUNCTION__, __FILE__);
//checkGE(mY, 0, "", __LINE__, __FUNCTION__, __FILE__);
const auto idx = mY * heatMapSize.width + mX;
const auto score = (vecX*mapX[idx] + vecY*mapY[idx]);
if (score > interThreshold)
{
sum += score;
count++;
}
}
// parts score + connection score
if (count > interMinAboveThreshold)
temp.emplace_back(std::make_tuple(sum / count, i, j));
}
}
}
// select the top minAB connection, assuming that each part occur only once
// sort rows in descending order based on parts + connection score
if (!temp.empty())
std::sort(temp.begin(), temp.end(), std::greater<std::tuple<float, int, int>>());
std::vector<std::tuple<int, int, double>> connectionK;
const auto minAB = fastMin(nA, nB);
std::vector<int> occurA(nA, 0);
std::vector<int> occurB(nB, 0);
auto counter = 0;
for (auto row = 0u; row < temp.size(); row++)
{
const auto score = std::get<0>(temp[row]);
const auto x = std::get<1>(temp[row]);
const auto y = std::get<2>(temp[row]);
if (!occurA[x - 1] && !occurB[y - 1])
{
connectionK.emplace_back(std::make_tuple(bodyPartA*peaksOffset + x * 3 + 2,
bodyPartB*peaksOffset + y * 3 + 2,
score));
counter++;
if (counter == minAB)
break;
occurA[x - 1] = 1;
occurB[y - 1] = 1;
}
}
// Cluster all the body part candidates into subset based on the part connection
// initialize first body part connection 15&16
if (pairIndex == 0)
{
for (const auto connectionKI : connectionK)
{
std::vector<int> rowVector(numberBodyParts + 3, 0);
const auto indexA = std::get<0>(connectionKI);
const auto indexB = std::get<1>(connectionKI);
const auto score = std::get<2>(connectionKI);
rowVector[bodyPartPairs[0]] = indexA;
rowVector[bodyPartPairs[1]] = indexB;
rowVector[subsetCounterIndex] = 2;
// add the score of parts and the connection
const auto subsetScore = peaksPtr[indexA] + peaksPtr[indexB] + score;
subset.emplace_back(std::make_pair(rowVector, subsetScore));
}
}
// Add ears connections (in case person is looking to opposite direction to camera)
else if (pairIndex == 17 || pairIndex == 18)
{
for (const auto& connectionKI : connectionK)
{
const auto indexA = std::get<0>(connectionKI);
const auto indexB = std::get<1>(connectionKI);
for (auto& subsetJ : subset)
{
auto& subsetJFirst = subsetJ.first[bodyPartA];
auto& subsetJFirstPlus1 = subsetJ.first[bodyPartB];
if (subsetJFirst == indexA && subsetJFirstPlus1 == 0)
subsetJFirstPlus1 = indexB;
else if (subsetJFirstPlus1 == indexB && subsetJFirst == 0)
subsetJFirst = indexA;
}
}
}
else
{
if (!connectionK.empty())
{
// A is already in the subset, find its connection B
for (auto i = 0u; i < connectionK.size(); i++)
{
const auto indexA = std::get<0>(connectionK[i]);
const auto indexB = std::get<1>(connectionK[i]);
const auto score = std::get<2>(connectionK[i]);
auto num = 0;
for (auto j = 0u; j < subset.size(); j++)
{
if (subset[j].first[bodyPartA] == indexA)
{
subset[j].first[bodyPartB] = indexB;
num++;
subset[j].first[subsetCounterIndex] = subset[j].first[subsetCounterIndex] + 1;
subset[j].second = subset[j].second + peaksPtr[indexB] + score;
}
}
// if can not find partA in the subset, create a new subset
if (num == 0)
{
std::vector<int> rowVector(subsetSize, 0);
rowVector[bodyPartA] = indexA;
rowVector[bodyPartB] = indexB;
rowVector[subsetCounterIndex] = 2;
const auto subsetScore = peaksPtr[indexA] + peaksPtr[indexB] + score;
subset.emplace_back(std::make_pair(rowVector, subsetScore));
}
}
}
}
}
}
// Delete people below the following thresholds:
// a) minSubsetCnt: removed if less than minSubsetCnt body parts
// b) minSubsetScore: removed if global score smaller than this
// c) POSE_MAX_PEOPLE: keep first POSE_MAX_PEOPLE people above thresholds
auto numberPeople = 0;
std::vector<int> validSubsetIndexes;
validSubsetIndexes.reserve(fastMin((size_t)POSE_MAX_PEOPLE, subset.size()));
for (auto index = 0u; index < subset.size(); index++)
{
const auto subsetCounter = subset[index].first[subsetCounterIndex];
const auto subsetScore = subset[index].second;
if (subsetCounter >= minSubsetCnt && (subsetScore / subsetCounter) > minSubsetScore)
{
numberPeople++;
validSubsetIndexes.emplace_back(index);
if (numberPeople == POSE_MAX_PEOPLE)
break;
}
else if (subsetCounter < 1)
printf("Bad subsetCounter. Bug in this function if this happens. %d, %s, %s", __LINE__, __FUNCTION__, __FILE__);
}
// Fill and return poseKeypoints
keypointShape = { numberPeople, (int)numberBodyParts, 3 };
if (numberPeople > 0)
poseKeypoints.resize(numberPeople * (int)numberBodyParts * 3);
else
poseKeypoints.clear();
for (auto person = 0u; person < validSubsetIndexes.size(); person++)
{
const auto& subsetI = subset[validSubsetIndexes[person]].first;
for (auto bodyPart = 0u; bodyPart < numberBodyParts; bodyPart++)
{
const auto baseOffset = (person*numberBodyParts + bodyPart) * 3;
const auto bodyPartIndex = subsetI[bodyPart];
if (bodyPartIndex > 0)
{
poseKeypoints[baseOffset] = peaksPtr[bodyPartIndex - 2] * scaleFactor;
poseKeypoints[baseOffset + 1] = peaksPtr[bodyPartIndex - 1] * scaleFactor;
poseKeypoints[baseOffset + 2] = peaksPtr[bodyPartIndex];
}
else
{
poseKeypoints[baseOffset] = 0.f;
poseKeypoints[baseOffset + 1] = 0.f;
poseKeypoints[baseOffset + 2] = 0.f;
}
}
}
}
//topShape[1] = bottomShape[1] - 1; // Number parts + bck - 1 56 = 57 - 1
//topShape[2] = maxPeaks + 1; // # maxPeaks + 1 97 = 96 + 1
//topShape[3] = 3; // X, Y, score 3
//bottom_blob是输入,top是输出
void nms(BlobData* bottom_blob, BlobData* top_blob, float threshold){
//maxPeaks就是最大人数,+1是为了第一位存个数
//算法,是每个点,如果大于阈值,同时大于上下左右值的时候,则认为是峰值
//算法很简单,featuremap的任意一个点,其上下左右和斜上下左右,都小于自身,就认为是要的点
//然后以该点区域,选择7*7区域,按照得分值和x、y来计算最合适的亚像素坐标
int w = bottom_blob->width;
int h = bottom_blob->height;
int plane_offset = w * h;
float* ptr = bottom_blob->list;
float* top_ptr = top_blob->list;
int top_plane_offset = top_blob->width * top_blob->height;
int max_peaks = top_blob->height - 1;
for (int n = 0; n < bottom_blob->num; ++n){
for (int c = 0; c < bottom_blob->channels - 1; ++c){
int num_peaks = 0;
for (int y = 1; y < h - 1 && num_peaks != max_peaks; ++y){
for (int x = 1; x < w - 1 && num_peaks != max_peaks; ++x){
float value = ptr[y*w + x];
if (value > threshold){
const float topLeft = ptr[(y - 1)*w + x - 1];
const float top = ptr[(y - 1)*w + x];
const float topRight = ptr[(y - 1)*w + x + 1];
const float left = ptr[y*w + x - 1];
const float right = ptr[y*w + x + 1];
const float bottomLeft = ptr[(y + 1)*w + x - 1];
const float bottom = ptr[(y + 1)*w + x];
const float bottomRight = ptr[(y + 1)*w + x + 1];
if (value > topLeft && value > top && value > topRight
&& value > left && value > right
&& value > bottomLeft && value > bottom && value > bottomRight)
{
//计算亚像素坐标
float xAcc = 0;
float yAcc = 0;
float scoreAcc = 0;
for (int kx = -3; kx <= 3; ++kx){
int ux = x + kx;
if (ux >= 0 && ux < w){
for (int ky = -3; ky <= 3; ++ky){
int uy = y + ky;
if (uy >= 0 && uy < h){
float score = ptr[uy * w + ux];
xAcc += ux * score;
yAcc += uy * score;
scoreAcc += score;
}
}
}
}
xAcc /= scoreAcc;
yAcc /= scoreAcc;
scoreAcc = value;
top_ptr[(num_peaks + 1) * 3 + 0] = xAcc;
top_ptr[(num_peaks + 1) * 3 + 1] = yAcc;
top_ptr[(num_peaks + 1) * 3 + 2] = scoreAcc;
num_peaks++;
}
}
}
}
top_ptr[0] = num_peaks;
ptr += plane_offset;
top_ptr += top_plane_offset;
}
}
}
void renderKeypointsCpu(Mat& frame, const vector<float>& keypoints, vector<int> keyshape, const std::vector<unsigned int>& pairs,
const std::vector<float> colors, const float thicknessCircleRatio, const float thicknessLineRatioWRTCircle,
const float threshold, float scale)
{
// Get frame channels
const auto width = frame.cols;
const auto height = frame.rows;
const auto area = width * height;
// Parameters
const auto lineType = 8;
const auto shift = 0;
const auto numberColors = colors.size();
const auto thresholdRectangle = 0.1f;
const auto numberKeypoints = keyshape[1];
// Keypoints
for (auto person = 0; person < keyshape[0]; person++)
{
{
const auto ratioAreas = 1;
// Size-dependent variables
const auto thicknessRatio = fastMax(intRound(std::sqrt(area)*thicknessCircleRatio * ratioAreas), 1);
// Negative thickness in cv::circle means that a filled circle is to be drawn.
const auto thicknessCircle = (ratioAreas > 0.05 ? thicknessRatio : -1);
const auto thicknessLine = 2;// intRound(thicknessRatio * thicknessLineRatioWRTCircle);
const auto radius = thicknessRatio / 2;
// Draw lines
for (auto pair = 0u; pair < pairs.size(); pair += 2)
{
const auto index1 = (person * numberKeypoints + pairs[pair]) * keyshape[2];
const auto index2 = (person * numberKeypoints + pairs[pair + 1]) * keyshape[2];
if (keypoints[index1 + 2] > threshold && keypoints[index2 + 2] > threshold)
{
const auto colorIndex = pairs[pair + 1] * 3; // Before: colorIndex = pair/2*3;
const cv::Scalar color{ colors[(colorIndex+2) % numberColors],
colors[(colorIndex + 1) % numberColors],
colors[(colorIndex + 0) % numberColors] };
const cv::Point keypoint1{ intRound(keypoints[index1] * scale), intRound(keypoints[index1 + 1] * scale) };
const cv::Point keypoint2{ intRound(keypoints[index2] * scale), intRound(keypoints[index2 + 1] * scale) };
cv::line(frame, keypoint1, keypoint2, color, thicknessLine, lineType, shift);
}
}
// Draw circles
for (auto part = 0; part < numberKeypoints; part++)
{
const auto faceIndex = (person * numberKeypoints + part) * keyshape[2];
if (keypoints[faceIndex + 2] > threshold)
{
const auto colorIndex = part * 3;
const cv::Scalar color{ colors[(colorIndex+2) % numberColors],
colors[(colorIndex + 1) % numberColors],
colors[(colorIndex + 0) % numberColors] };
const cv::Point center{ intRound(keypoints[faceIndex] * scale), intRound(keypoints[faceIndex + 1] * scale) };
cv::circle(frame, center, radius, color, thicknessCircle, lineType, shift);
}
}
}
}
}
void renderPoseKeypointsCpu(Mat& frame, const vector<float>& poseKeypoints, vector<int> keyshape,
const float renderThreshold, float scale, const bool blendOriginalFrame = true)
{
// Background
if (!blendOriginalFrame)
frame.setTo(0.f); // [0-255]
// Parameters
const auto thicknessCircleRatio = 1.f / 75.f;
const auto thicknessLineRatioWRTCircle = 0.75f;
const auto& pairs = POSE_COCO_PAIRS_RENDER;
// Render keypoints
renderKeypointsCpu(frame, poseKeypoints, keyshape, pairs, POSE_COCO_COLORS_RENDER, thicknessCircleRatio,
thicknessLineRatioWRTCircle, renderThreshold, scale);
}
void setGPU(int gpu_id){
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
if (gpu_id < 0) {
Caffe::set_mode(Caffe::CPU);
}
else {
Caffe::set_mode(Caffe::GPU);
Caffe::SetDevice(gpu_id);
}
#endif
}
BlobData* createBlob_local(int num, int channels, int height, int width){
BlobData* blob = new BlobData();
blob->num = num;
blob->width = width;
blob->channels = channels;
blob->height = height;
blob->count = num*width*channels*height;
blob->list = new float[blob->count];
blob->capacity_count = blob->count;
return blob;
}
BlobData* createEmptyBlobData(){
BlobData* blob = new BlobData();
memset(blob, 0, sizeof(*blob));
return blob;
}
void releaseBlob_local(BlobData** blob){
if (blob){
BlobData* ptr = *blob;
if (ptr){
if (ptr->list)
delete[] ptr->list;
delete ptr;
}
*blob = 0;
}
}
void help(){
printf(
"usage:\n"
" bin imagefile gpuid[-1] base_width[656] base_height[368] [deploy] [caffemodel]\n");
exit(-1);
}
int main(int argc, char** argv){
if(argc < 2) help();
//disable gflags output
google::InitGoogleLogging("aa");
const char* image = argv[1];
int gpuid = argc > 2 ? atoi(argv[2]) : -1;
int base_width = argc > 3 ? atoi(argv[3]) : 656;
int base_height = argc > 4 ? atoi(argv[4]) : 368;
const char* deploy = argc > 5 ? argv[5] : "pose_deploy_linevec.prototxt";
const char* caffemodel = argc > 6 ? argv[6] : "pose_iter_440000.caffemodel";
printf(
"image: %s\n"
"deploy: %s\n"
"caffemodel: %s\n",
image, deploy, caffemodel
);
if(gpuid < 0)
printf("compute device CPU.\n");
else
printf("compute device GPU(%d).\n", gpuid);
Mat raw_image = imread(image);
if (raw_image.empty()){
printf("read image fail: %s\n", image);
return 0;
}
//small size to speed up
Size baseSize = Size(base_width, base_height); //Size(656, 368);
printf("base size = width %d x height %d\n", baseSize.width, baseSize.height);
setGPU(gpuid);
//initialize net
Net<float>* net_ = new Net<float>(deploy, TEST);
net_->CopyTrainedLayersFrom(caffemodel);
Blob<float>* input_layer = net_->input_blobs()[0];
Size input_size(input_layer->width(), input_layer->height());
BlobData* nms_out = createBlob_local(1, 56, POSE_MAX_PEOPLE + 1, 3);
BlobData* input = createBlob_local(1, 57, baseSize.height, baseSize.width);
float scale = 0;
vector<float> keypoints;
vector<int> shape;
vector<Mat> input_channels;
Mat im = getImage(raw_image, baseSize, &scale);
//printf("reshape size: %d, %d, %d\n", input_layer->channels(), im.rows, im.cols);
input_layer->Reshape(1, input_layer->channels(), im.rows, im.cols);
net_->Reshape();
input_size = Size(im.cols, im.rows);
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels() * input_layer->num(); ++i) {
cv::Mat channel(input_size.height, input_size.width, CV_32FC1, input_data);
input_channels.emplace_back(channel);
CHECK_EQ((void*)input_data, (void*)channel.data);
input_data += input_size.area();
}
//获取一帧图片,根据约定的大小,这种方法是为了保证图像的宽高比不变
im = getImage(raw_image, baseSize, &scale);
//这一步转换加减去均值,手动操作
im.convertTo(im, CV_32F, 1 / 256.f, -0.5);
split(im, input_channels);
double time_begin = getTickCount();
net_->Forward();
Blob<float>* net_output_blob = net_->blob_by_name("net_output").get();
const float* net_output_data_begin = net_output_blob->cpu_data();
double fee_time = (getTickCount() - time_begin) / getTickFrequency() * 1000;
printf("forward fee: %.3f ms\n", fee_time);
BlobData* net_output = createBlob_local(net_output_blob->num(), net_output_blob->channels(), net_output_blob->height(), net_output_blob->width());
//获取网络输出,inplace
memcpy(net_output->list, net_output_data_begin, net_output_blob->count() * sizeof(float));
//把heatmap给resize到约定大小
for (int i = 0; i < net_output->channels; ++i){
Mat um(baseSize.height, baseSize.width, CV_32F, input->list + baseSize.height*baseSize.width*i);
//featuremap的resize插值方法很有关系
resize(Mat(net_output->height, net_output->width, CV_32F, net_output->list + net_output->width*net_output->height*i), um, baseSize, 0, 0, CV_INTER_CUBIC);
}
//获取每个feature map的局部极大值
nms(input, nms_out, 0.05);
//得到局部极大值后,根据PAFs、points做部件连接
connectBodyPartsCpu(keypoints, input->list, nms_out->list, baseSize, POSE_MAX_PEOPLE, 9, 0.05, 3, 0.4, 1, shape);
//printf("render to image.\n");
//绘图,显示
renderPoseKeypointsCpu(raw_image, keypoints, shape, 0.05, scale);
printf("finish. save result to 'test_openpose.jpg', people: %d\n", shape[0]);
imwrite("test_openpose.jpg", raw_image);
releaseBlob_local(&net_output);
releaseBlob_local(&input);
releaseBlob_local(&nms_out);
delete net_;
return 1;
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV