-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathMReLU.cu
73 lines (54 loc) · 2.14 KB
/
MReLU.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include "MReLU.hpp"
#include <json.hpp>
typedef TRTInfer::halfloat halfloat;
template<typename _T>
__global__ void MReLUKernel(_T* input, _T* output, _T bias, int edge);
template<>
__global__ void MReLUKernel(float* input, float* output, float bias, int edge) {
KERNEL_POSITION;
float x = input[position];
float a = x > 0 ? x : 0;
output[position] = a + bias;
}
template<>
__global__ void MReLUKernel(halfloat* input, halfloat* output, halfloat bias, int edge) {
KERNEL_POSITION;
halfloat x = input[position];
halfloat _zero = 0.0f;
x = x > _zero ? x : _zero;
output[position] = x + bias;
}
void MReLUConfig::init(){
INFO("init MReLU config: %s", info_.c_str());
INFO("MReLU weights = %d[%s]", this->weights_.size(), this->weights_[0]->shapeString());
Json::Value value;
if(Json::Reader().parse(info_, value)){
INFO("MReLU kernel_size: %d", value["kernel_size"].asInt());
INFO("MReLU eps: %g", value["eps"].asFloat());
INFO("MReLU other: %s", value["other"].asCString());
}
}
nvinfer1::Dims MReLU::outputDims(int index, const nvinfer1::Dims* inputDims, int nbInputDims) {
return inputDims[0];
}
std::shared_ptr<LayerConfig> MReLU::config(const std::string& layerName) {
auto cfg = std::shared_ptr<LayerConfig>(new MReLUConfig());
//定义我们这个插件支持half和float格式
cfg->supportDataType_ = {nvinfer1::DataType::kHALF, nvinfer1::DataType::kFLOAT};
//cfg->supportDataType_ = {nvinfer1::DataType::kHALF};
return cfg;
}
int MReLU::enqueue(const std::vector<GTensor>& inputs, std::vector<GTensor>& outputs, const std::vector<GTensor>& weights, void* workspace, cudaStream_t stream) {
int count = inputs[0].count();
auto grid = gridDims(count);
auto block = blockDims(count);
float bias = *this->config_->weights_[0]->cpu<float>();
if (config_->configDataType_ == TRTInfer::DataType::dtFloat) {
MReLUKernel <<<grid, block >>> (inputs[0].ptr<float>(), outputs[0].ptr<float>(), bias, count);
}
else if (config_->configDataType_ == TRTInfer::DataType::dtHalfloat) {
MReLUKernel <<<grid, block>>> (inputs[0].ptr<halfloat>(), outputs[0].ptr<halfloat>(), halfloat(bias), count);
}
return 0;
}
RegisterPlugin(MReLU);