forked from huawei-noah/bolt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ultra_face.cpp
172 lines (158 loc) · 7.25 KB
/
ultra_face.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "ultra_face.h"
#include <getopt.h>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/opencv.hpp"
using namespace cv;
char *modelPath = (char *)"";
std::string inputData = "";
char *affinityPolicyName = (char *)"CPU_AFFINITY_HIGH_PERFORMANCE";
char *algorithmMapPath = (char *)"";
void print_ultraface_usage()
{
std::cout << "ultra_face usage: (<> must be filled in with exact value)\n"
"./ultra_face -m <boltModelPath> -i <inputDataPath>\n"
"\nParameter description:\n"
"1. -m <boltModelPath>: The path where .bolt is stored.\n"
"2. -i [inputDataPath]: The input video data(avi) absolute path.\n"
"Example: ./ultra_face -m ./ultra_face_fp32.bolt -i ./face_detection_sample.avi\n"
"The output video is : ./face_detection_sample_bolt.avi"
<< std::endl;
}
void parse_options(int argc, char *argv[])
{
std::cout << "\nPlease enter this command './benchmark --help' to get more usage "
"information.\n";
std::vector<std::string> lineArgs(argv, argv + argc);
for (std::string arg : lineArgs) {
if (arg == "--help" || arg == "-help" || arg == "--h" || arg == "-h") {
print_ultraface_usage();
exit(-1);
}
}
int option;
const char *optionstring = "m:i:";
while ((option = getopt(argc, argv, optionstring)) != -1) {
switch (option) {
case 'm':
std::cout << "option is -m <boltModelPath>, value is: " << optarg << std::endl;
modelPath = optarg;
break;
case 'i':
std::cout << "option is -i [inputDataPath], value is: " << optarg << std::endl;
inputData = std::string(optarg);
break;
default:
std::cout << "Input option gets error, please check the params meticulously.\n";
print_ultraface_usage();
exit(-1);
}
}
}
std::map<std::string, std::shared_ptr<Tensor>> get_output(
std::shared_ptr<CNN> pipeline, std::string affinity)
{
std::map<std::string, std::shared_ptr<Tensor>> outMap = pipeline->get_output();
if (affinity == "GPU") {
#ifdef _USE_GPU
for (auto iter : outMap) {
Tensor result = *(iter.second);
auto mem = (OclMemory *)result.get_memory();
mem->get_mapped_ptr();
}
#else
UNI_WARNING_LOG("this binary not support GPU, please recompile project with GPU "
"compile options\n");
#endif
}
return outMap;
}
int main(int argc, char *argv[])
{
prior_boxes_generator(320, 240, 0.7, 0.3); // debug check the size of prior
parse_options(argc, argv);
int last_gang_index = inputData.find_last_of('/');
int last_dot_index = inputData.find_last_of('.');
std::string prefix_str = inputData.substr(0, last_gang_index + 1);
std::string video_name =
inputData.substr(last_gang_index + 1, last_dot_index - last_gang_index - 1);
std::string suffix_str = inputData.substr(last_dot_index, inputData.length());
std::string output_video_path = prefix_str + "bolt_" + video_name + suffix_str;
VideoCapture cap(inputData);
if (!cap.isOpened()) {
std::cout << "Cannot open the video file. \n";
return -1;
} else {
std::cout << "Successfully open the video! \n\n";
}
int frame_width = cap.get(3);
int frame_height = cap.get(4);
int frame_rate = cap.get(5);
VideoWriter video(output_video_path, cv::VideoWriter::fourcc('M', 'J', 'P', 'G'), frame_rate,
Size(frame_width, frame_height));
// deal with the first frame and set up the global variables
cv::Mat img;
cap >> img;
if (img.empty()) {
std::cout << "ERROR: video is empty(), please check the input video.\n";
return 0;
}
image_h = img.rows; // global variable
image_w = img.cols; // global variable
int img_channel = img.channels(); // local variable
cv::Mat img_float;
cv::Mat img_resize;
std::vector<float> vec_original;
std::shared_ptr<U8> input_ptr(new U8[image_h * image_w * img_channel * sizeof(float)]);
float *vec_normalize = (float *)(input_ptr.get());
auto pipeline = createPipeline(affinityPolicyName, modelPath, algorithmMapPath);
std::map<std::string, TensorDesc> inputDescMap = pipeline->get_input_desc();
auto item = inputDescMap.begin();
std::map<std::string, std::shared_ptr<U8>> model_tensors_input;
std::map<std::string, std::shared_ptr<Tensor>> outMap;
while (1) {
img.convertTo(img_float, CV_32F);
cv::resize(img_float, img_resize, cv::Size(320, 240)); // magic number
vec_original.assign((float *)img_resize.datastart, (float *)img_resize.dataend);
int iter_index = 0;
for (int i = img.channels() - 1; i >= 0; i--) {
for (unsigned int j = 0; j < vec_original.size() / img.channels(); j++) {
vec_normalize[iter_index] = (vec_original[j * img.channels() + i] - 127.0) / 128.0;
iter_index++;
}
}
model_tensors_input[item->first] = input_ptr;
pipeline->set_input_by_assign(model_tensors_input);
pipeline->run();
outMap = get_output(pipeline, affinityPolicyName);
std::vector<FaceInfo> bbox_collection;
Tensor box_tensor = *(outMap["boxes"].get());
Tensor score_tensor = *(outMap["scores"].get());
bounding_boxes_generator(bbox_collection, box_tensor, score_tensor);
std::vector<FaceInfo> bolt_final_result;
nms(bbox_collection, bolt_final_result, hard_nms);
for (unsigned int i = 0; i < bolt_final_result.size(); i++) {
auto face = bolt_final_result[i];
cv::Point pt1(face.x1, face.y1);
cv::Point pt2(face.x2, face.y2);
cv::rectangle(img, pt1, pt2, cv::Scalar(0, 255, 0), 2);
}
video.write(img);
cap >> img;
if (img.empty()) {
break;
}
}
std::cout << "result saved at " << output_video_path << std::endl;
return 0;
}