forked from nashory/pggan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
93 lines (82 loc) · 3.32 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
""" config.py
"""
import argparse
import time
parser = argparse.ArgumentParser("PGGAN")
## general settings.
parser.add_argument(
"--train_data_root", type=str, default="/home/veesion/nabirds/images/"
)
parser.add_argument("--random_seed", type=int, default=int(time.time()))
parser.add_argument("--n_gpu", type=int, default=1) # for Multi-GPU training.
## training parameters.
parser.add_argument("--lr", type=float, default=0.001) # learning rate.
parser.add_argument(
"--lr_decay", type=float, default=0.9
) # learning rate decay at every resolution transition.
parser.add_argument(
"--eps_drift", type=float, default=0.001
) # coeff for the drift loss.
parser.add_argument(
"--smoothing", type=float, default=0.997
) # smoothing factor for smoothed generator.
parser.add_argument("--nc", type=int, default=3) # number of input channel.
parser.add_argument("--nz", type=int, default=512) # input dimension of noise.
parser.add_argument(
"--ngf", type=int, default=512
) # feature dimension of final layer of generator.
parser.add_argument(
"--ndf", type=int, default=512
) # feature dimension of first layer of discriminator.
parser.add_argument(
"--TICK", type=int, default=1000
) # 1 tick = 1000 images = (1000/batch_size) iter.
parser.add_argument("--max_resl", type=int, default=8) # 10-->1024, 9-->512, 8-->256
parser.add_argument("--trns_tick", type=int, default=200) # transition tick
parser.add_argument("--stab_tick", type=int, default=500) # stabilization tick
parser.add_argument("--resume", type=int, default=0) # stabilization tick
## network structure.
parser.add_argument(
"--flag_wn", type=bool, default=True
) # use of equalized-learning rate.
parser.add_argument(
"--flag_bn", type=bool, default=False
) # use of batch-normalization. (not recommended)
parser.add_argument(
"--flag_pixelwise", type=bool, default=True
) # use of pixelwise normalization for generator.
parser.add_argument(
"--flag_gdrop", type=bool, default=True
) # use of generalized dropout layer for discriminator.
parser.add_argument(
"--flag_leaky", type=bool, default=True
) # use of leaky relu instead of relu.
parser.add_argument(
"--flag_tanh", type=bool, default=False
) # use of tanh at the end of the generator.
parser.add_argument(
"--flag_sigmoid", type=bool, default=False
) # use of sigmoid at the end of the discriminator.
parser.add_argument(
"--flag_add_noise", type=bool, default=True
) # add noise to the real image(x)
parser.add_argument(
"--flag_norm_latent", type=bool, default=False
) # pixelwise normalization of latent vector (z)
parser.add_argument("--flag_add_drift", type=bool, default=True) # add drift loss
## optimizer setting.
parser.add_argument("--optimizer", type=str, default="adam") # optimizer type.
parser.add_argument("--beta1", type=float, default=0.0) # beta1 for adam.
parser.add_argument("--beta2", type=float, default=0.99) # beta2 for adam.
## display and save setting.
parser.add_argument(
"--use_tb", type=bool, default=True
) # enable tensorboard visualization
parser.add_argument(
"--save_img_every", type=int, default=20
) # save images every specified iteration.
parser.add_argument(
"--display_tb_every", type=int, default=5
) # display progress every specified iteration.
## parse and save config.
config, _ = parser.parse_known_args()