-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute.cpp
154 lines (149 loc) · 6.2 KB
/
compute.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include "compute.hpp"
#include <assert.h>
#include <chrono>
#include <array>
#include <vector>
#include <string>
#include <numeric>
#include "mkldnn.hpp"
void initialize() {
auto cpu_engine = mkldnn::engine(mkldnn::engine::cpu, 0);
}
class layer {
private:
enum layer_type {
EMPTY, FCN, CONV, RELU, POOL, LRN
};
public:
std::vector<layer&> prev, next;
std::string name, desc;
std::array<uint, 3> input_dim, output_dim;
dnnl::memory dst_memory;
layer_type type;
layer() {
input_dim = prev[0].output_dim;
for(auto i: prev) {
if(input_dim != i.output_dim) {
// ERROR: padding mismatch
}
i.next.push_back((layer&)*this);
this->prev.push_back(i);
output_dim = input_dim;
}
}
virtual ~layer();
};
class fcn: layer {
fcn();
virtual ~fcn();
};
class conv: layer {
std::vector<float> conv_weights;
std::vector<float> conv_bias;
conv(std::vector<layer> &prev, int filters, int w, int h, int stride, int padding) {
output_dim = {(input_dim[0] - w) / stride + 1, (input_dim[1] - h) / stride + 1, filters};
mkldnn::memory::dims conv_src_tz = {batch, input_dim[2], input_dim[0], input_dim[1]};
mkldnn::memory::dims conv_weights_tz = {output_dim[2], input_dim[2], w, h};
mkldnn::memory::dims conv_bias_tz = {filters};
mkldnn::memory::dims conv_dst_tz = {batch, output_dim[2], output_dim[0], output_dim[1]};
mkldnn::memory::dims conv_strides = {stride, stride};
mkldnn::memory::dims conv_padding = {padding, padding};
auto conv_padding = {0, 0};
std::vector<float> conv_weights(std::accumulate(conv_weights_tz.begin(),
conv_weights_tz.end(), 1, std::multiplies<uint32_t>()));
std::vector<float> conv_bias(std::accumulate(conv_bias_tz.begin(), conv_bias_tz.end(), 1,
std::multiplies<uint32_t>()));
auto conv_user_weights_memory = mkldnn::memory({{{conv_weights_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::oihw}, engine},
conv_weights.data());
auto conv_user_bias_memory = mkldnn::memory({{{conv_bias_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::x}, engine}, conv_bias.data());
auto conv_src_md = mkldnn::memory::desc({conv_src_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::any);
auto conv_weights_md = mkldnn::memory::desc({conv_weights_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::any);
auto conv_bias_md = mkldnn::memory::desc({conv_bias_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::any);
auto conv_desc = mkldnn::convolution_forward::desc(mkldnn::pop_kind::forward,
mkldnn::convolution_direct, conv_src_md, conv_weights_md, conv_bias_md,
conv_dst_md, conv_strides, conv_padding, conv_padding, mkldnn::padding_kind::zero);
auto conv_prim_desc = mkldnn::convolution_forward::primitive_desc(conv_desc, engine);
dst_memory = mkldnn::memory(conv_prim_desc.dst_primitive_desc());
// create memory for user data
auto conv5_user_weights_memory
= memory({{conv5_weights_tz}, dt::f32, tag::goihw}, eng);
write_to_dnnl_memory(conv5_weights.data(), conv5_user_weights_memory);
auto conv5_user_bias_memory
= memory({{conv5_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv5_bias.data(), conv5_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto conv5_src_md = memory::desc({conv5_src_tz}, dt::f32, tag::any);
auto conv5_weights_md = memory::desc({conv5_weights_tz}, dt::f32, tag::any);
auto conv5_bias_md = memory::desc({conv5_bias_tz}, dt::f32, tag::any);
auto conv5_dst_md = memory::desc({conv5_dst_tz}, dt::f32, tag::any);
// create a convolution
auto conv5_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv5_src_md, conv5_weights_md,
conv5_bias_md, conv5_dst_md, conv5_strides, conv5_padding,
conv5_padding);
auto conv5_prim_desc = convolution_forward::primitive_desc(conv5_desc, eng);
auto conv5_src_memory = conv4_dst_memory;
if (conv5_prim_desc.src_desc() != conv5_src_memory.get_desc()) {
conv5_src_memory = memory(conv5_prim_desc.src_desc(), eng);
net.push_back(reorder(conv4_dst_memory, conv5_src_memory));
net_args.push_back({{DNNL_ARG_FROM, conv4_dst_memory},
{DNNL_ARG_TO, conv5_src_memory}});
}
auto conv5_weights_memory = conv5_user_weights_memory;
if (conv5_prim_desc.weights_desc()
!= conv5_user_weights_memory.get_desc()) {
conv5_weights_memory = memory(conv5_prim_desc.weights_desc(), eng);
reorder(conv5_user_weights_memory, conv5_weights_memory)
.execute(s, conv5_user_weights_memory, conv5_weights_memory);
}
auto conv5_dst_memory = memory(conv5_prim_desc.dst_desc(), eng);
}
virtual ~conv();
};
class relu: layer {
relu(std::vector<layer> &prev) {
const double negative_slope = 1.0;
dst_memory = mkldnn::memory(prev[0].dst_memory.dst_primitive_desc());
auto relu_desc = mkldnn::relu_forward::desc(mkldnn::prop_kind::forward,
conv_prim_desc.dst_primitive_desc().desc(), negative_slope);
}
virtual ~relu();
};
class pool: layer {
pool(std::vector<layer> &prev, int stride, padding) {
mkldnn::memory::dims pool_dst_tz = {batch, output_dim[2], output_dim[0], output_dim[1]};
mkldnn::memory::dims pool_kernel = {pool, pool};
mkldnn::memory::dims pool_strides = {stride, stride};
auto pool_padding = {0, 0};
auto pool_user_dst_memory = mkldnn::memory({{{pool_dst_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw}, engine}, net_dst.data());
auto pool_dst_md = mkldnn::memory::desc({pool_dst_tz},
mkldnn::memory::data_type::f32, mkldnn::memory::format::any);
auto pool_desc = mkldnn::pooling_forward::desc(mkldnn::prop_kind::forward,
mkldnn::pooling_max, prev[0].dst_memory.get_primitive_desc().desc(), pool_dst_md,
pool_strides, pool_kernel, pool_padding, pool_padding, mkldnn::pading_kind::zero);
auto pool_pd = mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
dst_memory = pool_user_dst_memory;
auto pool_indicies_memory = mkldnn::memory(dst_memory.get_primitive_desc());
}
virtual ~pool();
};
class lrn: layer {
lrn(std::vector<layer> &prev) {
const uint32_t local_size = 5;
const double alpha = 0.0001;
const double beta = 0.75;
dst_memory = mkldnn::memory(prev[0].dst_memory.get_primitive_desc());
auto lrn_scratch_memory = mkldnn::memory(dst_memory.get_primitive_desc());
auto lrn_desc = mkldnn::lrn_forward::desc(mkldnn::prop_kind::forward,
mkldnn::lrn_across_channels, conv_prim_desc.dst_primitive_desc().desc(), local_size, alpha,
beta);
auto lrn_prim_desc = mkldnn::lrn_forward::primitive_desc(lrn_desc, engine);
}
virtual ~lrn();
};