-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.cpp
650 lines (632 loc) · 29.4 KB
/
inference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#include "inference.hpp"
#include <assert.h>
#include <chrono>
#include <vector>
#include <unordered_map>
#include "dnnl.hpp"
using namespace dnnl;
void simple_net(engine::kind engine_kind, int times = 100) {
using tag = memory::format_tag;
using dt = memory::data_type;
/// Initialize an engine and stream. The last parameter in the call represents
/// the index of the engine.
/// @snippet cnn_inference_f32.cpp Initialize engine and stream
//[Initialize engine and stream]
engine eng(engine_kind, 0);
stream s(eng);
//[Initialize engine and stream]
/// Create a vector for the primitives and a vector to hold memory
/// that will be used as arguments.
/// @snippet cnn_inference_f32.cpp Create network
//[Create network]
std::vector<primitive> net;
std::vector<std::unordered_map<int, memory>> net_args;
//[Create network]
const memory::dim batch = 1;
// AlexNet: conv1
// {batch, 3, 227, 227} (x) {96, 3, 11, 11} -> {batch, 96, 55, 55}
// strides: {4, 4}
memory::dims conv1_src_tz = {batch, 3, 227, 227};
memory::dims conv1_weights_tz = {96, 3, 11, 11};
memory::dims conv1_bias_tz = {96};
memory::dims conv1_dst_tz = {batch, 96, 55, 55};
memory::dims conv1_strides = {4, 4};
memory::dims conv1_padding = {0, 0};
/// Allocate buffers for input and output data, weights, and bias.
/// @snippet cnn_inference_f32.cpp Allocate buffers
//[Allocate buffers]
std::vector<float> user_src(batch * 3 * 227 * 227);
std::vector<float> user_dst(batch * 1000);
std::vector<float> conv1_weights(product(conv1_weights_tz));
std::vector<float> conv1_bias(product(conv1_bias_tz));
//[Allocate buffers]
/// Create memory that describes data layout in the buffers. This example uses
/// tag::nchw (batch-channels-height-width) for input data and tag::oihw
/// for weights.
/// @snippet cnn_inference_f32.cpp Create user memory
//[Create user memory]
auto user_src_memory = memory({{conv1_src_tz}, dt::f32, tag::nchw}, eng);
write_to_dnnl_memory(user_src.data(), user_src_memory);
auto user_weights_memory
= memory({{conv1_weights_tz}, dt::f32, tag::oihw}, eng);
write_to_dnnl_memory(conv1_weights.data(), user_weights_memory);
auto conv1_user_bias_memory
= memory({{conv1_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv1_bias.data(), conv1_user_bias_memory);
//[Create user memory]
/// Create memory descriptors with layout tag::any. The `any` format enables
/// the convolution primitive to choose the data format that will result in
/// best performance based on its input parameters (convolution kernel
/// sizes, strides, padding, and so on). If the resulting format is different
/// from `nchw`, the user data must be transformed to the format required for
/// the convolution (as explained below).
/// @snippet cnn_inference_f32.cpp Create convolution memory descriptors
//[Create convolution memory descriptors]
auto conv1_src_md = memory::desc({conv1_src_tz}, dt::f32, tag::any);
auto conv1_bias_md = memory::desc({conv1_bias_tz}, dt::f32, tag::any);
auto conv1_weights_md = memory::desc({conv1_weights_tz}, dt::f32, tag::any);
auto conv1_dst_md = memory::desc({conv1_dst_tz}, dt::f32, tag::any);
//[Create convolution memory descriptors]
/// Create a convolution descriptor by specifying propagation kind,
/// [convolution algorithm](@ref dev_guide_convolution), shapes of input,
/// weights, bias, output, convolution strides, padding, and kind of padding.
/// Propagation kind is set to prop_kind::forward_inference to optimize for
/// inference execution and omit computations that are necessary only for
/// backward propagation.
/// @snippet cnn_inference_f32.cpp Create convolution descriptor
//[Create convolution descriptor]
auto conv1_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv1_src_md, conv1_weights_md,
conv1_bias_md, conv1_dst_md, conv1_strides, conv1_padding,
conv1_padding);
//[Create convolution descriptor]
/// Create a convolution primitive descriptor. Once created, this
/// descriptor has specific formats instead of the `any` format specified
/// in the convolution descriptor.
/// @snippet cnn_inference_f32.cpp Create convolution primitive descriptor
//[Create convolution primitive descriptor]
auto conv1_prim_desc = convolution_forward::primitive_desc(conv1_desc, eng);
//[Create convolution primitive descriptor]
/// Check whether data and weights formats required by convolution is different
/// from the user format. In case it is different change the layout using
/// reorder primitive.
/// @snippet cnn_inference_f32.cpp Reorder data and weights
//[Reorder data and weights]
auto conv1_src_memory = user_src_memory;
if (conv1_prim_desc.src_desc() != user_src_memory.get_desc()) {
conv1_src_memory = memory(conv1_prim_desc.src_desc(), eng);
net.push_back(reorder(user_src_memory, conv1_src_memory));
net_args.push_back({{DNNL_ARG_FROM, user_src_memory},
{DNNL_ARG_TO, conv1_src_memory}});
}
auto conv1_weights_memory = user_weights_memory;
if (conv1_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
conv1_weights_memory = memory(conv1_prim_desc.weights_desc(), eng);
reorder(user_weights_memory, conv1_weights_memory)
.execute(s, user_weights_memory, conv1_weights_memory);
}
//[Reorder data and weights]
/// Create a memory primitive for output.
/// @snippet cnn_inference_f32.cpp Create memory for output
//[Create memory for output]
auto conv1_dst_memory = memory(conv1_prim_desc.dst_desc(), eng);
//[Create memory for output]
/// Create a convolution primitive and add it to the net.
/// @snippet cnn_inference_f32.cpp Create memory for output
//[Create convolution primitive]
net.push_back(convolution_forward(conv1_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv1_src_memory},
{DNNL_ARG_WEIGHTS, conv1_weights_memory},
{DNNL_ARG_BIAS, conv1_user_bias_memory},
{DNNL_ARG_DST, conv1_dst_memory}});
//[Create convolution primitive]
// AlexNet: relu1
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
const float negative1_slope = 0.0f;
/// Create the relu primitive. For better performance, keep the input data
/// format for ReLU (as well as for other operation primitives until another
/// convolution or inner product is encountered) the same as the one chosen
/// for convolution. Also note that ReLU is done in-place by using conv1 memory.
/// @snippet cnn_inference_f32.cpp Create relu primitive
//[Create relu primitive]
auto relu1_desc = eltwise_forward::desc(prop_kind::forward_inference,
algorithm::eltwise_relu, conv1_dst_memory.get_desc(),
negative1_slope);
auto relu1_prim_desc = eltwise_forward::primitive_desc(relu1_desc, eng);
net.push_back(eltwise_forward(relu1_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv1_dst_memory},
{DNNL_ARG_DST, conv1_dst_memory}});
//[Create relu primitive]
// AlexNet: lrn1
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
// local size: 5
// alpha1: 0.0001
// beta1: 0.75
const memory::dim local1_size = 5;
const float alpha1 = 0.0001f;
const float beta1 = 0.75f;
const float k1 = 1.0f;
// create lrn primitive and add it to net
auto lrn1_desc = lrn_forward::desc(prop_kind::forward_inference,
algorithm::lrn_across_channels, conv1_dst_memory.get_desc(),
local1_size, alpha1, beta1, k1);
auto lrn1_prim_desc = lrn_forward::primitive_desc(lrn1_desc, eng);
auto lrn1_dst_memory = memory(lrn1_prim_desc.dst_desc(), eng);
net.push_back(lrn_forward(lrn1_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv1_dst_memory},
{DNNL_ARG_DST, lrn1_dst_memory}});
// AlexNet: pool1
// {batch, 96, 55, 55} -> {batch, 96, 27, 27}
// kernel: {3, 3}
// strides: {2, 2}
memory::dims pool1_dst_tz = {batch, 96, 27, 27};
memory::dims pool1_kernel = {3, 3};
memory::dims pool1_strides = {2, 2};
memory::dims pool_padding = {0, 0};
auto pool1_dst_md = memory::desc({pool1_dst_tz}, dt::f32, tag::any);
/// For training execution, pooling requires a private workspace memory
/// to perform the backward pass. However, pooling should not use 'workspace'
/// for inference, because this is detrimental to performance.
/// @snippet cnn_inference_f32.cpp Create pooling primitive
///
/// The example continues to create more layers according
/// to the AlexNet topology.
//[Create pooling primitive]
auto pool1_desc = pooling_forward::desc(prop_kind::forward_inference,
algorithm::pooling_max, lrn1_dst_memory.get_desc(), pool1_dst_md,
pool1_strides, pool1_kernel, pool_padding, pool_padding);
auto pool1_pd = pooling_forward::primitive_desc(pool1_desc, eng);
auto pool1_dst_memory = memory(pool1_pd.dst_desc(), eng);
net.push_back(pooling_forward(pool1_pd));
net_args.push_back({{DNNL_ARG_SRC, lrn1_dst_memory},
{DNNL_ARG_DST, pool1_dst_memory}});
//[Create pooling primitive]
// AlexNet: conv2
// {batch, 96, 27, 27} (x) {2, 128, 48, 5, 5} -> {batch, 256, 27, 27}
// strides: {1, 1}
memory::dims conv2_src_tz = {batch, 96, 27, 27};
memory::dims conv2_weights_tz = {2, 128, 48, 5, 5};
memory::dims conv2_bias_tz = {256};
memory::dims conv2_dst_tz = {batch, 256, 27, 27};
memory::dims conv2_strides = {1, 1};
memory::dims conv2_padding = {2, 2};
std::vector<float> conv2_weights(product(conv2_weights_tz));
std::vector<float> conv2_bias(product(conv2_bias_tz));
// create memory for user data
auto conv2_user_weights_memory
= memory({{conv2_weights_tz}, dt::f32, tag::goihw}, eng);
write_to_dnnl_memory(conv2_weights.data(), conv2_user_weights_memory);
auto conv2_user_bias_memory
= memory({{conv2_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv2_bias.data(), conv2_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto conv2_src_md = memory::desc({conv2_src_tz}, dt::f32, tag::any);
auto conv2_bias_md = memory::desc({conv2_bias_tz}, dt::f32, tag::any);
auto conv2_weights_md = memory::desc({conv2_weights_tz}, dt::f32, tag::any);
auto conv2_dst_md = memory::desc({conv2_dst_tz}, dt::f32, tag::any);
// create a convolution
auto conv2_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv2_src_md, conv2_weights_md,
conv2_bias_md, conv2_dst_md, conv2_strides, conv2_padding,
conv2_padding);
auto conv2_prim_desc = convolution_forward::primitive_desc(conv2_desc, eng);
auto conv2_src_memory = pool1_dst_memory;
if (conv2_prim_desc.src_desc() != conv2_src_memory.get_desc()) {
conv2_src_memory = memory(conv2_prim_desc.src_desc(), eng);
net.push_back(reorder(pool1_dst_memory, conv2_src_memory));
net_args.push_back({{DNNL_ARG_FROM, pool1_dst_memory},
{DNNL_ARG_TO, conv2_src_memory}});
}
auto conv2_weights_memory = conv2_user_weights_memory;
if (conv2_prim_desc.weights_desc()
!= conv2_user_weights_memory.get_desc()) {
conv2_weights_memory = memory(conv2_prim_desc.weights_desc(), eng);
reorder(conv2_user_weights_memory, conv2_weights_memory)
.execute(s, conv2_user_weights_memory, conv2_weights_memory);
}
auto conv2_dst_memory = memory(conv2_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(convolution_forward(conv2_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv2_src_memory},
{DNNL_ARG_WEIGHTS, conv2_weights_memory},
{DNNL_ARG_BIAS, conv2_user_bias_memory},
{DNNL_ARG_DST, conv2_dst_memory}});
// AlexNet: relu2
// {batch, 256, 27, 27} -> {batch, 256, 27, 27}
const float negative2_slope = 0.0f;
// create relu primitive and add it to net
auto relu2_desc = eltwise_forward::desc(prop_kind::forward_inference,
algorithm::eltwise_relu, conv2_dst_memory.get_desc(),
negative2_slope);
auto relu2_prim_desc = eltwise_forward::primitive_desc(relu2_desc, eng);
net.push_back(eltwise_forward(relu2_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv2_dst_memory},
{DNNL_ARG_DST, conv2_dst_memory}});
// AlexNet: lrn2
// {batch, 256, 27, 27} -> {batch, 256, 27, 27}
// local size: 5
// alpha2: 0.0001
// beta2: 0.75
const memory::dim local2_size = 5;
const float alpha2 = 0.0001f;
const float beta2 = 0.75f;
const float k2 = 1.0f;
// create lrn primitive and add it to net
auto lrn2_desc = lrn_forward::desc(prop_kind::forward_inference,
algorithm::lrn_across_channels, conv2_prim_desc.dst_desc(),
local2_size, alpha2, beta2, k2);
auto lrn2_prim_desc = lrn_forward::primitive_desc(lrn2_desc, eng);
auto lrn2_dst_memory = memory(lrn2_prim_desc.dst_desc(), eng);
net.push_back(lrn_forward(lrn2_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv2_dst_memory},
{DNNL_ARG_DST, lrn2_dst_memory}});
// AlexNet: pool2
// {batch, 256, 27, 27} -> {batch, 256, 13, 13}
// kernel: {3, 3}
// strides: {2, 2}
memory::dims pool2_dst_tz = {batch, 256, 13, 13};
memory::dims pool2_kernel = {3, 3};
memory::dims pool2_strides = {2, 2};
memory::dims pool2_padding = {0, 0};
auto pool2_dst_md = memory::desc({pool2_dst_tz}, dt::f32, tag::any);
// create a pooling
auto pool2_desc = pooling_forward::desc(prop_kind::forward_inference,
algorithm::pooling_max, lrn2_dst_memory.get_desc(), pool2_dst_md,
pool2_strides, pool2_kernel, pool2_padding, pool2_padding);
auto pool2_pd = pooling_forward::primitive_desc(pool2_desc, eng);
auto pool2_dst_memory = memory(pool2_pd.dst_desc(), eng);
// create pooling primitive an add it to net
net.push_back(pooling_forward(pool2_pd));
net_args.push_back({{DNNL_ARG_SRC, lrn2_dst_memory},
{DNNL_ARG_DST, pool2_dst_memory}});
// AlexNet: conv3
// {batch, 256, 13, 13} (x) {384, 256, 3, 3}; -> {batch, 384, 13, 13};
// strides: {1, 1}
memory::dims conv3_src_tz = {batch, 256, 13, 13};
memory::dims conv3_weights_tz = {384, 256, 3, 3};
memory::dims conv3_bias_tz = {384};
memory::dims conv3_dst_tz = {batch, 384, 13, 13};
memory::dims conv3_strides = {1, 1};
memory::dims conv3_padding = {1, 1};
std::vector<float> conv3_weights(product(conv3_weights_tz));
std::vector<float> conv3_bias(product(conv3_bias_tz));
// create memory for user data
auto conv3_user_weights_memory
= memory({{conv3_weights_tz}, dt::f32, tag::oihw}, eng);
write_to_dnnl_memory(conv3_weights.data(), conv3_user_weights_memory);
auto conv3_user_bias_memory
= memory({{conv3_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv3_bias.data(), conv3_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto conv3_src_md = memory::desc({conv3_src_tz}, dt::f32, tag::any);
auto conv3_bias_md = memory::desc({conv3_bias_tz}, dt::f32, tag::any);
auto conv3_weights_md = memory::desc({conv3_weights_tz}, dt::f32, tag::any);
auto conv3_dst_md = memory::desc({conv3_dst_tz}, dt::f32, tag::any);
// create a convolution
auto conv3_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv3_src_md, conv3_weights_md,
conv3_bias_md, conv3_dst_md, conv3_strides, conv3_padding,
conv3_padding);
auto conv3_prim_desc = convolution_forward::primitive_desc(conv3_desc, eng);
auto conv3_src_memory = pool2_dst_memory;
if (conv3_prim_desc.src_desc() != conv3_src_memory.get_desc()) {
conv3_src_memory = memory(conv3_prim_desc.src_desc(), eng);
net.push_back(reorder(pool2_dst_memory, conv3_src_memory));
net_args.push_back({{DNNL_ARG_FROM, pool2_dst_memory},
{DNNL_ARG_TO, conv3_src_memory}});
}
auto conv3_weights_memory = conv3_user_weights_memory;
if (conv3_prim_desc.weights_desc()
!= conv3_user_weights_memory.get_desc()) {
conv3_weights_memory = memory(conv3_prim_desc.weights_desc(), eng);
reorder(conv3_user_weights_memory, conv3_weights_memory)
.execute(s, conv3_user_weights_memory, conv3_weights_memory);
}
auto conv3_dst_memory = memory(conv3_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(convolution_forward(conv3_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv3_src_memory},
{DNNL_ARG_WEIGHTS, conv3_weights_memory},
{DNNL_ARG_BIAS, conv3_user_bias_memory},
{DNNL_ARG_DST, conv3_dst_memory}});
// AlexNet: relu3
// {batch, 384, 13, 13} -> {batch, 384, 13, 13}
const float negative3_slope = 0.0f;
// create relu primitive and add it to net
auto relu3_desc = eltwise_forward::desc(prop_kind::forward_inference,
algorithm::eltwise_relu, conv3_dst_memory.get_desc(),
negative3_slope);
auto relu3_prim_desc = eltwise_forward::primitive_desc(relu3_desc, eng);
net.push_back(eltwise_forward(relu3_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv3_dst_memory},
{DNNL_ARG_DST, conv3_dst_memory}});
// AlexNet: conv4
// {batch, 384, 13, 13} (x) {2, 192, 192, 3, 3}; ->
// {batch, 384, 13, 13};
// strides: {1, 1}
memory::dims conv4_src_tz = {batch, 384, 13, 13};
memory::dims conv4_weights_tz = {2, 192, 192, 3, 3};
memory::dims conv4_bias_tz = {384};
memory::dims conv4_dst_tz = {batch, 384, 13, 13};
memory::dims conv4_strides = {1, 1};
memory::dims conv4_padding = {1, 1};
std::vector<float> conv4_weights(product(conv4_weights_tz));
std::vector<float> conv4_bias(product(conv4_bias_tz));
// create memory for user data
auto conv4_user_weights_memory
= memory({{conv4_weights_tz}, dt::f32, tag::goihw}, eng);
write_to_dnnl_memory(conv4_weights.data(), conv4_user_weights_memory);
auto conv4_user_bias_memory
= memory({{conv4_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv4_bias.data(), conv4_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto conv4_src_md = memory::desc({conv4_src_tz}, dt::f32, tag::any);
auto conv4_bias_md = memory::desc({conv4_bias_tz}, dt::f32, tag::any);
auto conv4_weights_md = memory::desc({conv4_weights_tz}, dt::f32, tag::any);
auto conv4_dst_md = memory::desc({conv4_dst_tz}, dt::f32, tag::any);
// create a convolution
auto conv4_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv4_src_md, conv4_weights_md,
conv4_bias_md, conv4_dst_md, conv4_strides, conv4_padding,
conv4_padding);
auto conv4_prim_desc = convolution_forward::primitive_desc(conv4_desc, eng);
auto conv4_src_memory = conv3_dst_memory;
if (conv4_prim_desc.src_desc() != conv4_src_memory.get_desc()) {
conv4_src_memory = memory(conv4_prim_desc.src_desc(), eng);
net.push_back(reorder(conv3_dst_memory, conv4_src_memory));
net_args.push_back({{DNNL_ARG_FROM, conv3_dst_memory},
{DNNL_ARG_TO, conv4_src_memory}});
}
auto conv4_weights_memory = conv4_user_weights_memory;
if (conv4_prim_desc.weights_desc()
!= conv4_user_weights_memory.get_desc()) {
conv4_weights_memory = memory(conv4_prim_desc.weights_desc(), eng);
reorder(conv4_user_weights_memory, conv4_weights_memory)
.execute(s, conv4_user_weights_memory, conv4_weights_memory);
}
auto conv4_dst_memory = memory(conv4_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(convolution_forward(conv4_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv4_src_memory},
{DNNL_ARG_WEIGHTS, conv4_weights_memory},
{DNNL_ARG_BIAS, conv4_user_bias_memory},
{DNNL_ARG_DST, conv4_dst_memory}});
// AlexNet: relu4
// {batch, 384, 13, 13} -> {batch, 384, 13, 13}
const float negative4_slope = 0.0f;
// create relu primitive and add it to net
auto relu4_desc = eltwise_forward::desc(prop_kind::forward_inference,
algorithm::eltwise_relu, conv4_dst_memory.get_desc(),
negative4_slope);
auto relu4_prim_desc = eltwise_forward::primitive_desc(relu4_desc, eng);
net.push_back(eltwise_forward(relu4_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv4_dst_memory},
{DNNL_ARG_DST, conv4_dst_memory}});
// AlexNet: conv5
// {batch, 384, 13, 13} (x) {2, 128, 192, 3, 3}; -> {batch, 256, 13, 13};
// strides: {1, 1}
memory::dims conv5_src_tz = {batch, 384, 13, 13};
memory::dims conv5_weights_tz = {2, 128, 192, 3, 3};
memory::dims conv5_bias_tz = {256};
memory::dims conv5_dst_tz = {batch, 256, 13, 13};
memory::dims conv5_strides = {1, 1};
memory::dims conv5_padding = {1, 1};
std::vector<float> conv5_weights(product(conv5_weights_tz));
std::vector<float> conv5_bias(product(conv5_bias_tz));
// create memory for user data
auto conv5_user_weights_memory
= memory({{conv5_weights_tz}, dt::f32, tag::goihw}, eng);
write_to_dnnl_memory(conv5_weights.data(), conv5_user_weights_memory);
auto conv5_user_bias_memory
= memory({{conv5_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv5_bias.data(), conv5_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto conv5_src_md = memory::desc({conv5_src_tz}, dt::f32, tag::any);
auto conv5_weights_md = memory::desc({conv5_weights_tz}, dt::f32, tag::any);
auto conv5_bias_md = memory::desc({conv5_bias_tz}, dt::f32, tag::any);
auto conv5_dst_md = memory::desc({conv5_dst_tz}, dt::f32, tag::any);
// create a convolution
auto conv5_desc = convolution_forward::desc(prop_kind::forward_inference,
algorithm::convolution_direct, conv5_src_md, conv5_weights_md,
conv5_bias_md, conv5_dst_md, conv5_strides, conv5_padding,
conv5_padding);
auto conv5_prim_desc = convolution_forward::primitive_desc(conv5_desc, eng);
auto conv5_src_memory = conv4_dst_memory;
if (conv5_prim_desc.src_desc() != conv5_src_memory.get_desc()) {
conv5_src_memory = memory(conv5_prim_desc.src_desc(), eng);
net.push_back(reorder(conv4_dst_memory, conv5_src_memory));
net_args.push_back({{DNNL_ARG_FROM, conv4_dst_memory},
{DNNL_ARG_TO, conv5_src_memory}});
}
auto conv5_weights_memory = conv5_user_weights_memory;
if (conv5_prim_desc.weights_desc()
!= conv5_user_weights_memory.get_desc()) {
conv5_weights_memory = memory(conv5_prim_desc.weights_desc(), eng);
reorder(conv5_user_weights_memory, conv5_weights_memory)
.execute(s, conv5_user_weights_memory, conv5_weights_memory);
}
auto conv5_dst_memory = memory(conv5_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(convolution_forward(conv5_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv5_src_memory},
{DNNL_ARG_WEIGHTS, conv5_weights_memory},
{DNNL_ARG_BIAS, conv5_user_bias_memory},
{DNNL_ARG_DST, conv5_dst_memory}});
// AlexNet: relu5
// {batch, 256, 13, 13} -> {batch, 256, 13, 13}
const float negative5_slope = 0.0f;
// create relu primitive and add it to net
auto relu5_desc = eltwise_forward::desc(prop_kind::forward_inference,
algorithm::eltwise_relu, conv5_dst_memory.get_desc(),
negative5_slope);
auto relu5_prim_desc = eltwise_forward::primitive_desc(relu5_desc, eng);
net.push_back(eltwise_forward(relu5_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, conv5_dst_memory},
{DNNL_ARG_DST, conv5_dst_memory}});
// AlexNet: pool5
// {batch, 256, 13, 13} -> {batch, 256, 6, 6}
// kernel: {3, 3}
// strides: {2, 2}
memory::dims pool5_dst_tz = {batch, 256, 6, 6};
memory::dims pool5_kernel = {3, 3};
memory::dims pool5_strides = {2, 2};
memory::dims pool5_padding = {0, 0};
std::vector<float> pool5_dst(product(pool5_dst_tz));
auto pool5_dst_md = memory::desc({pool5_dst_tz}, dt::f32, tag::any);
// create a pooling
auto pool5_desc = pooling_forward::desc(prop_kind::forward_inference,
algorithm::pooling_max, conv5_dst_memory.get_desc(), pool5_dst_md,
pool5_strides, pool5_kernel, pool5_padding, pool5_padding);
auto pool5_pd = pooling_forward::primitive_desc(pool5_desc, eng);
auto pool5_dst_memory = memory(pool5_pd.dst_desc(), eng);
// create pooling primitive an add it to net
net.push_back(pooling_forward(pool5_pd));
net_args.push_back({{DNNL_ARG_SRC, conv5_dst_memory},
{DNNL_ARG_DST, pool5_dst_memory}});
// fc6 inner product {batch, 256, 6, 6} (x) {4096, 256, 6, 6}-> {batch,
// 4096}
memory::dims fc6_src_tz = {batch, 256, 6, 6};
memory::dims fc6_weights_tz = {4096, 256, 6, 6};
memory::dims fc6_bias_tz = {4096};
memory::dims fc6_dst_tz = {batch, 4096};
std::vector<float> fc6_weights(product(fc6_weights_tz));
std::vector<float> fc6_bias(product(fc6_bias_tz));
// create memory for user data
auto fc6_user_weights_memory
= memory({{fc6_weights_tz}, dt::f32, tag::oihw}, eng);
write_to_dnnl_memory(fc6_weights.data(), fc6_user_weights_memory);
auto fc6_user_bias_memory = memory({{fc6_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(fc6_bias.data(), fc6_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto fc6_src_md = memory::desc({fc6_src_tz}, dt::f32, tag::any);
auto fc6_bias_md = memory::desc({fc6_bias_tz}, dt::f32, tag::any);
auto fc6_weights_md = memory::desc({fc6_weights_tz}, dt::f32, tag::any);
auto fc6_dst_md = memory::desc({fc6_dst_tz}, dt::f32, tag::any);
// create a inner_product
auto fc6_desc = inner_product_forward::desc(prop_kind::forward_inference,
fc6_src_md, fc6_weights_md, fc6_bias_md, fc6_dst_md);
auto fc6_prim_desc = inner_product_forward::primitive_desc(fc6_desc, eng);
auto fc6_src_memory = pool5_dst_memory;
if (fc6_prim_desc.src_desc() != fc6_src_memory.get_desc()) {
fc6_src_memory = memory(fc6_prim_desc.src_desc(), eng);
net.push_back(reorder(pool5_dst_memory, fc6_src_memory));
net_args.push_back({{DNNL_ARG_FROM, pool5_dst_memory},
{DNNL_ARG_TO, fc6_src_memory}});
}
auto fc6_weights_memory = fc6_user_weights_memory;
if (fc6_prim_desc.weights_desc() != fc6_user_weights_memory.get_desc()) {
fc6_weights_memory = memory(fc6_prim_desc.weights_desc(), eng);
reorder(fc6_user_weights_memory, fc6_weights_memory)
.execute(s, fc6_user_weights_memory, fc6_weights_memory);
}
auto fc6_dst_memory = memory(fc6_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(inner_product_forward(fc6_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, fc6_src_memory},
{DNNL_ARG_WEIGHTS, fc6_weights_memory},
{DNNL_ARG_BIAS, fc6_user_bias_memory},
{DNNL_ARG_DST, fc6_dst_memory}});
// fc7 inner product {batch, 4096} (x) {4096, 4096}-> {batch, 4096}
memory::dims fc7_weights_tz = {4096, 4096};
memory::dims fc7_bias_tz = {4096};
memory::dims fc7_dst_tz = {batch, 4096};
std::vector<float> fc7_weights(product(fc7_weights_tz));
std::vector<float> fc7_bias(product(fc7_bias_tz));
// create memory for user data
auto fc7_user_weights_memory
= memory({{fc7_weights_tz}, dt::f32, tag::nc}, eng);
write_to_dnnl_memory(fc7_weights.data(), fc7_user_weights_memory);
auto fc7_user_bias_memory = memory({{fc7_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(fc7_bias.data(), fc7_user_bias_memory);
// create memory descriptors for convolution data w/ no specified format
auto fc7_bias_md = memory::desc({fc7_bias_tz}, dt::f32, tag::any);
auto fc7_weights_md = memory::desc({fc7_weights_tz}, dt::f32, tag::any);
auto fc7_dst_md = memory::desc({fc7_dst_tz}, dt::f32, tag::any);
// create a inner_product
auto fc7_desc = inner_product_forward::desc(prop_kind::forward_inference,
fc6_dst_memory.get_desc(), fc7_weights_md, fc7_bias_md, fc7_dst_md);
auto fc7_prim_desc = inner_product_forward::primitive_desc(fc7_desc, eng);
auto fc7_weights_memory = fc7_user_weights_memory;
if (fc7_prim_desc.weights_desc() != fc7_user_weights_memory.get_desc()) {
fc7_weights_memory = memory(fc7_prim_desc.weights_desc(), eng);
reorder(fc7_user_weights_memory, fc7_weights_memory)
.execute(s, fc7_user_weights_memory, fc7_weights_memory);
}
auto fc7_dst_memory = memory(fc7_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(inner_product_forward(fc7_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, fc6_dst_memory},
{DNNL_ARG_WEIGHTS, fc7_weights_memory},
{DNNL_ARG_BIAS, fc7_user_bias_memory},
{DNNL_ARG_DST, fc7_dst_memory}});
// fc8 inner product {batch, 4096} (x) {1000, 4096}-> {batch, 1000}
memory::dims fc8_weights_tz = {1000, 4096};
memory::dims fc8_bias_tz = {1000};
memory::dims fc8_dst_tz = {batch, 1000};
std::vector<float> fc8_weights(product(fc8_weights_tz));
std::vector<float> fc8_bias(product(fc8_bias_tz));
// create memory for user data
auto fc8_user_weights_memory
= memory({{fc8_weights_tz}, dt::f32, tag::nc}, eng);
write_to_dnnl_memory(fc8_weights.data(), fc8_user_weights_memory);
auto fc8_user_bias_memory = memory({{fc8_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(fc8_bias.data(), fc8_user_bias_memory);
auto user_dst_memory = memory({{fc8_dst_tz}, dt::f32, tag::nc}, eng);
write_to_dnnl_memory(user_dst.data(), user_dst_memory);
// create memory descriptors for convolution data w/ no specified format
auto fc8_bias_md = memory::desc({fc8_bias_tz}, dt::f32, tag::any);
auto fc8_weights_md = memory::desc({fc8_weights_tz}, dt::f32, tag::any);
auto fc8_dst_md = memory::desc({fc8_dst_tz}, dt::f32, tag::any);
// create a inner_product
auto fc8_desc = inner_product_forward::desc(prop_kind::forward_inference,
fc7_dst_memory.get_desc(), fc8_weights_md, fc8_bias_md, fc8_dst_md);
auto fc8_prim_desc = inner_product_forward::primitive_desc(fc8_desc, eng);
auto fc8_weights_memory = fc8_user_weights_memory;
if (fc8_prim_desc.weights_desc() != fc8_user_weights_memory.get_desc()) {
fc8_weights_memory = memory(fc8_prim_desc.weights_desc(), eng);
reorder(fc8_user_weights_memory, fc8_weights_memory)
.execute(s, fc8_user_weights_memory, fc8_weights_memory);
}
auto fc8_dst_memory = memory(fc8_prim_desc.dst_desc(), eng);
// create convolution primitive and add it to net
net.push_back(inner_product_forward(fc8_prim_desc));
net_args.push_back({{DNNL_ARG_SRC, fc7_dst_memory},
{DNNL_ARG_WEIGHTS, fc8_weights_memory},
{DNNL_ARG_BIAS, fc8_user_bias_memory},
{DNNL_ARG_DST, fc8_dst_memory}});
// create reorder between internal and user data if it is needed and
// add it to net after pooling
if (fc8_dst_memory != user_dst_memory) {
net.push_back(reorder(fc8_dst_memory, user_dst_memory));
net_args.push_back({{DNNL_ARG_FROM, fc8_dst_memory},
{DNNL_ARG_TO, user_dst_memory}});
}
/// @page cnn_inference_f32_cpp
/// Finally, execute the primitives. For this example, the net is executed
/// multiple times and each execution is timed individually.
/// @snippet cnn_inference_f32.cpp Execute model
//[Execute model]
for (int j = 0; j < times; ++j) {
assert(net.size() == net_args.size() && "something is missing");
for (size_t i = 0; i < net.size(); ++i)
net.at(i).execute(s, net_args.at(i));
}
//[Execute model]
s.wait();
}
void cnn_inference_f32(engine::kind engine_kind) {
auto begin = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
int times = 100;
simple_net(engine_kind, times);
auto end = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
std::cout << "Use time: " << (end - begin) / (times + 0.0)
<< " ms per iteration." << std::endl;
}
int main(int argc, char **argv) {
return handle_example_errors(
cnn_inference_f32, parse_engine_kind(argc, argv));
}