forked from bapoczos/deep-dream-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_dream_demo_multiscale.py
181 lines (129 loc) · 6.22 KB
/
deep_dream_demo_multiscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# boilerplate code
from __future__ import print_function
import os
from io import BytesIO
import numpy as np
from functools import partial
import PIL.Image
#from IPython.display import clear_output, Image, display, HTML
import tensorflow as tf
#!wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip && unzip inception5h.zip
model_fn = 'tensorflow_inception_graph.pb'
# creating TensorFlow session and loading the model
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
with tf.gfile.FastGFile(model_fn, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
t_input = tf.placeholder(np.float32, name='input') # define the input tensor
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})
layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
print('Number of layers', len(layers))
print('Total number of feature channels:', sum(feature_nums))
#***************************************************
# Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity
# to have non-zero gradients for features with negative initial activations.
layer = 'mixed4d_3x3_bottleneck_pre_relu'
channel = 139 # picking some feature channel to visualize
# start with a gray image with a little noise
img_noise = np.random.uniform(size=(224, 224, 3)) + 100.0
def showarray(a, fname, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 1) * 255)
#f = BytesIO()
PIL.Image.fromarray(a).save(fname, fmt)
#display(Image(data=f.getvalue()))
def visstd(a, s=0.1):
'''Normalize the image range for visualization'''
return (a - a.mean()) / max(a.std(), 1e-4) * s + 0.5
def T(layer):
'''Helper for getting layer output tensor'''
return graph.get_tensor_by_name("import/%s:0" % layer)
def render_naive(t_obj, img0=img_noise, iter_n=20, step=1.0):
t_score = tf.reduce_mean(t_obj) # defining the optimization objective. This is mean of a given channel in a tensor layer defined by t_obj
# we want to maaximize this objective
t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
img = img0.copy()
showarray(visstd(img),'./results/result_0')
act_obj = sess.run(t_obj, {t_input: img_noise})
print('objective tensor size', act_obj.shape)
for i in range(iter_n):
g, score = sess.run([t_grad, t_score], {t_input: img})
# normalizing the gradient, so the same step size should work
g /= g.std() + 1e-8 # for different layers and networks
img += g * step
print(i, ' ', score)
fname='./results/result_'+str(i)
showarray(visstd(img),fname)
# clear_output()
showarray(visstd(img),'./results/result_final')
render_naive(T(layer)[:, :, :, channel])
#***************************************************
#***************************************************
#Multiscale image generation
# We are going to apply gradient ascent on multiple scales.
# Details formed on smaller scale will be upscaled and augmented with additional details on the next scale.
#With multiscale image generation it may be tempting to set the number of octaves to some high value to produce wallpaper-sized images.
# Storing network activations and backprop values will quickly run out of GPU memory in this case. There is a simple trick to avoid this:
# split the image into smaller tiles and compute each tile gradient independently.
#Applying random shifts to the image before every iteration helps avoid tile seams and improves the overall image quality.
print('**** Multiscale ****')
def tffunc(*argtypes):
'''Helper that transforms TF-graph generating function into a regular one.
See "resize" function below.
'''
placeholders = list(map(tf.placeholder, argtypes))
def wrap(f):
out = f(*placeholders)
def wrapper(*args, **kw):
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
return wrapper
return wrap
# Helper function that uses TF to resize an image
def resize(img, size):
img = tf.expand_dims(img, 0)
return tf.image.resize_bilinear(img, size)[0,:,:,:]
resize = tffunc(np.float32, np.int32)(resize)
def calc_grad_tiled(img, t_grad, t_obj, tile_size=512):
'''Compute the value of tensor t_grad over the image in a tiled way.
Random shifts are applied to the image to blur tile boundaries over
multiple iterations.'''
sz = tile_size
print('tile size', tile_size)
h, w = img.shape[:2]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
grad = np.zeros_like(img)
y=0
x=0
sub = img_shift[y:y + sz, x:x + sz]
act_obj = sess.run(t_obj, {t_input: sub})
print('objective tensor size', act_obj.shape)
for y in range(0, max(h-sz//2, sz),sz):
for x in range(0, max(w-sz//2, sz),sz):
sub = img_shift[y:y+sz,x:x+sz]
g = sess.run(t_grad, {t_input:sub})
grad[y:y+sz,x:x+sz] = g
print('x:',x,'y:',y)
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
def render_multiscale(t_obj, img0=img_noise, iter_n=10, step=1.0, octave_n=3, octave_scale=1.4):
t_score = tf.reduce_mean(t_obj) # defining the optimization objective
t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
img = img0.copy()
for octave in range(octave_n):
if octave > 0:
hw = np.float32(img.shape[:2]) * octave_scale
img = resize(img, np.int32(hw))
for i in range(iter_n):
g = calc_grad_tiled(img, t_grad,t_obj)
# normalizing the gradient, so the same step size should work
g /= g.std() + 1e-8 # for different layers and networks
img += g * step
print('o: ' ,octave,'i: ',i, 'size:', g.shape, end=' ')
# clear_output()
fname = './results/multi_scale_result_' + str(i)+ '_'+str(octave)
showarray(visstd(img), fname)
render_multiscale(T(layer)[:, :, :, channel])
#***************************************************