-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSnakefile
167 lines (146 loc) · 4.7 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import pandas as pd
wildcard_constraints:
eid = '[^.]+',
mark = '[^.]+',
hg19_sizes = 'annotations/hg19.fa.sizes'
eids = [
'E003', 'E004', 'E005', 'E006', 'E007',
'E016', 'E066', 'E087', 'E114', 'E116',
'E118',
]
marks = [
'H3K4me1',
'H3K4me3',
'H3K9me3',
'H3K27me3',
'H3K36me3',
'H3K27ac',
'H3K9ac',
]
tissue_mapping = pd.read_csv('annotations/tissue_mapping.csv')
eid2tissue = {r.eid:r.tissue for r in tissue_mapping.to_records()}
# eids = ['E114']
tissues = [eid2tissue[eid] for eid in eids]
# Register target files.
tagalign = expand('hist/{eid}-{mark}.sorted.bam.bai', eid=eids, mark=marks)
coverage = expand('hist/{eid}-{mark}.sorted.bedGraph', eid=eids, mark=marks)
npz = expand('hist/{eid}-{mark}.npz', eid=eids, mark=marks)
raw_exp = 'exp/raw_exp.tsv'
train_meta = 'train.csv'
signals = expand('data/{eid}/.done', eid=eids)
ALL = []
ALL.append(tagalign)
ALL.append(coverage)
ALL.append(npz)
ALL.append(raw_exp)
ALL.append(train_meta)
ALL.append(signals)
rule all:
input: ALL
rule download_chip_tagalign:
output: temp('hist/{eid}-{mark}.tagAlign')
resources: network = 1
conda:
'environment.yaml'
benchmark: 'benchmarks/download_chip_tagalign/{eid}-{mark}.tsv'
shell:
'wget "https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/{wildcards.eid}-{wildcards.mark}.tagAlign.gz" -O- | gunzip -c > {output}'
rule bedtobam:
input: 'hist/{eid}-{mark}.tagAlign'
output: temp('hist/{eid}-{mark}.bam')
conda:
'environment.yaml'
benchmark: 'benchmarks/bedtobam/{eid}-{mark}.tsv'
shell:
'bedtools bedtobam -i {input} -g {hg19_sizes} > {output}'
rule sambamba_sort:
input: 'hist/{eid}-{mark}.bam'
output: 'hist/{eid}-{mark}.sorted.bam'
threads: 4
conda:
'environment.yaml'
benchmark: 'benchmarks/sambamba_sort/{eid}-{mark}.tsv'
shell:
'sambamba sort -o {output} -t {threads} --tmpdir . {input}'
rule sambamba_index:
input: 'hist/{eid}-{mark}.sorted.bam'
output: 'hist/{eid}-{mark}.sorted.bam.bai'
threads: 4
conda:
'environment.yaml'
benchmark: 'benchmarks/sambamba_index/{eid}-{mark}.tsv'
shell:
'sambamba index -t {threads} {input}'
rule bedtools_genomecov:
input:
bam = 'hist/{eid}-{mark}.sorted.bam',
bai = 'hist/{eid}-{mark}.sorted.bam.bai',
output: 'hist/{eid}-{mark}.sorted.bedGraph'
conda:
'environment.yaml'
benchmark: 'benchmarks/bedtools_genomecov/{eid}-{mark}.tsv'
shell:
'bedtools genomecov -ibam '
'{input.bam} -bga | '
'bedtools sort -i stdin > {output}'
rule bdg2npz:
input: 'hist/{eid}-{mark}.sorted.bedGraph'
output: 'hist/{eid}-{mark}.npz'
conda:
'environment.yaml'
benchmark: 'benchmarks/bdg2npz/{eid}-{mark}.tsv'
shell:
'python scripts/bdg2npz.py '
'-i {input} '
'-c {hg19_sizes} '
'-o {output}'
rule download_exp:
output: 'exp/raw_exp.tsv'
conda:
'environment.yaml'
benchmark: 'benchmarks/download_exp.tsv'
shell:
'wget https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz -O- | '
'gunzip -c | '
'sed \'s/[ \\t]*$//\' > {output}'
rule prepare_train_metadata:
input:
expand('annotations/{tissue}_frag2neighbors.pickle', tissue=tissues),
expand('annotations/{tissue}_pair2score.pickle', tissue=tissues),
output:
'train.csv'
conda:
'environment.yaml'
benchmark: 'benchmarks/prepare_train_metadata.tsv'
shell:
'python scripts/prepare_train_metadata.py'
rule download_frag2neighbors_per_tissue:
output:
'annotations/{tissue}_frag2neighbors.pickle'
resources: network = 1
benchmark: 'benchmarks/download_frag2neighbors_per_tissue/{tissue}.tsv'
shell:
'wget '
'https://dohlee-bioinfo.sgp1.digitaloceanspaces.com/chromoformer-data/{wildcards.tissue}_frag2neighbors.pickle '
'-O- > {output}'
rule download_pair2score_per_tissue:
output:
'annotations/{tissue}_pair2score.pickle'
resources: network = 1
benchmark: 'benchmarks/download_pair2score_per_tissue/{tissue}.tsv'
shell:
'wget '
'https://dohlee-bioinfo.sgp1.digitaloceanspaces.com/chromoformer-data/{wildcards.tissue}_pair2score.pickle '
'-O- > {output}'
rule extract_signals:
input:
train = 'train.csv',
read_depths = expand('hist/{{eid}}-{mark}.npz', mark=marks),
output:
touch('data/{eid}/.done')
benchmark: 'benchmarks/extract_signals/{eid}.tsv'
shell:
'python scripts/extract_signals.py '
'-i {input.train} '
'--eid {wildcards.eid} '
'-o data/{wildcards.eid}'