-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasync_main.py
333 lines (271 loc) · 10.7 KB
/
async_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import dotenv
from dotenv import load_dotenv
import openai
from llama_index import(
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
ServiceContext,
LLMPredictor,
GPTVectorStoreIndex,
QuestionAnswerPrompt
)
import pinecone
from llama_index.vector_stores import PineconeVectorStore
from llama_index.retrievers import VectorIndexRetriever
from langchain.chat_models import ChatOpenAI
from llama_index.vector_stores.types import ExactMatchFilter, MetadataFilters
import streamlit as st
import asyncio
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
def create_list_of_case_numbers(cases_folder_path):
list_of_case_numbers = []
cases = os.listdir(cases_folder_path)
for case in cases:
case_number = case.replace(".docx","")
list_of_case_numbers.append(case_number)
print(list_of_case_numbers)
return list_of_case_numbers
def build_docs(cases_folder_path):
docs = []
docs = SimpleDirectoryReader(input_dir=cases_folder_path).load_data()
for doc in docs:
# print(doc.metadata)
fn = doc.metadata["file_name"]
case_num = fn.replace(".docx","")
doc.metadata = {
"content_type":"case_itself",
"fn": fn,
"case_num": case_num
}
print(f"Docs created. Number of docs: {len(docs)}")
return docs
def build_context(model_name):
llm_predictor = LLMPredictor(
llm=ChatOpenAI(temperature=0, model_name=model_name)
)
return ServiceContext.from_defaults(llm_predictor=llm_predictor)
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"),
environment=os.getenv("PINECONE_ENVIRONMENT")
)
index_name = "cases-index"
if index_name not in pinecone.list_indexes():
pinecone.create_index(
index_name,
dimension=1536,
metric='cosine'
)
print("Pinecone canvas does not exist. Just created and connected.")
pinecone_index = pinecone.Index(index_name)
print("Pinecone canvas already exists. Now we're connected.")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = build_context("gpt-3.5-turbo")
GPTVectorStoreIndex.from_documents(
docs,
storage_context=storage_context,
service_context=service_context
)
print("Upsert to Pinecone done.")
def build_search_engine():
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"),
environment=os.getenv("PINECONE_ENVIRONMENT")
)
index_name = "cases-index"
if index_name not in pinecone.list_indexes():
pinecone.create_index(
index_name,
dimension=1536,
metric='cosine'
)
print("Pinecone canvas does not exist. Just created and connected.")
pinecone_index = pinecone.Index(index_name)
print("Pinecone canvas already exists. Now we're connected.")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
# filters = MetadataFilters(filters=[
# ExactMatchFilter(
# key = "content_type",
# value = "case_itself"
# )
# ])
retriever = VectorIndexRetriever(
index=vector_index,
similarity_top_k=20,
vector_store_query_mode="default",
# filters=filters
)
print("Top Level Search Engine Retriever created.")
return retriever
def query_search_engine(retriever, query, filters:list):
nodes = retriever.retrieve(query)
print(f"Nodes retrieved. Number of nodes: {len(nodes)}")
#Filter nodes by content_type
filtered_nodes = []
for node in nodes:
try:
content_type = node.metadata["content_type"]
for filter in filters:
if content_type == filter:
filtered_nodes.append(node)
except:
print("This node does not have content_type.")
print(f"Here is the number of filtered nodes based on content type: {len(filtered_nodes)}")
#Remove duplicate nodes and count unique case number
case_num_in_nodes = []
for node in filtered_nodes:
try:
case_num = node.metadata["case_num"]
if case_num not in case_num_in_nodes:
case_num_in_nodes.append(case_num)
except:
print("This node does not have case_num.")
print(f"Here are the unique case numbers: {case_num_in_nodes}")
print(f"Unique case numbers retrieved: {len(case_num_in_nodes)}")
return case_num_in_nodes
def build_case_query_engine(case_num):
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"),
environment=os.getenv("PINECONE_ENVIRONMENT")
)
index_name = "cases-index"
if index_name not in pinecone.list_indexes():
pinecone.create_index(
index_name,
dimension=1536,
metric='cosine'
)
print("Pinecone canvas does not exist. Just created and connected.")
pinecone_index = pinecone.Index(index_name)
print("Pinecone canvas already exists. Now we're connected.")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
filters = MetadataFilters(filters=[
ExactMatchFilter(
key = "case_num",
value = case_num
)
])
PROMPT_TEMPLATE = (
"Here are the context information:"
"\n------------------------------\n"
"{context_str}"
"\n------------------------------\n"
"You are a AI legal assistant for lawyers in Hong Kong. Answer the follwing question in two parts. Break down these two parts with sub-headings. First, explained what happened in the case for reference in the context. Second, explain how this case is relevant to the following siutation or question: {query_str}. \n"
)
QA_PROMPT = QuestionAnswerPrompt(PROMPT_TEMPLATE)
query_engine = vector_index.as_query_engine(
similarity_top_k=3,
vector_store_query_mode="default",
filters=filters,
text_qa_template=QA_PROMPT,
streaming = True,
service_context=build_context("gpt-3.5-turbo")
)
print("Query engine created.")
return query_engine
async def query_case(case_num, query):
# st.expander({case_num})
# asyncio.sleep(1)
# st.expander({query})
# asyncio.sleep(1)
# st.expander({case_num})
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"),
environment=os.getenv("PINECONE_ENVIRONMENT")
)
index_name = "cases-index"
if index_name not in pinecone.list_indexes():
pinecone.create_index(
index_name,
dimension=1536,
metric='cosine'
)
print("Pinecone canvas does not exist. Just created and connected.")
pinecone_index = pinecone.Index(index_name)
print("Pinecone canvas already exists. Now we're connected.")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
filters = MetadataFilters(filters=[
ExactMatchFilter(
key = "case_num",
value = case_num
)
])
PROMPT_TEMPLATE = (
"Here are the context information:"
"\n------------------------------\n"
"{context_str}"
"\n------------------------------\n"
"You are a AI legal assistant for lawyers in Hong Kong. Answer the follwing question in two parts. Break down these two parts with sub-headings. First, explained what happened in the case for reference in the context. Second, explain how this case is relevant to the following siutation or question: {query_str}. \n"
)
QA_PROMPT = QuestionAnswerPrompt(PROMPT_TEMPLATE)
query_engine = vector_index.as_query_engine(
similarity_top_k=3,
vector_store_query_mode="default",
filters=filters,
text_qa_template=QA_PROMPT,
streaming = True,
service_context=build_context("gpt-3.5-turbo")
)
# query_engine = build_case_query_engine(case_num)
print("hahah i am dokmy.")
response = query_engine.query(query)
res_gen = response.response_gen
res_box = st.empty()
stream = []
for res in res_gen:
stream.append(res)
answer = "".join(stream).strip()
res_box.write(answer)
async def concurrent_tasks(list_of_case_num, query):
tasks = [query_case(case_num, query) for case_num in list_of_case_num]
return await asyncio.gather(*tasks)
st.sidebar.title("Search Legal Cases")
with st.sidebar:
st.markdown("**Describe your client's situation in the following box.**")
user_input = st.sidebar.text_area("Be as specific as possible:", placeholder="E.g. My client slips and falls in a shopping mall while working...")
st.markdown("**Select types of cases to search:**")
JUD_filter = st.checkbox("Judgments", value=True)
AOD_filter = st.checkbox("Assessment of Damages", value=True)
RUL_filter = st.checkbox("Rulings")
DEC_filter = st.checkbox("Decisions")
submit_button = st.sidebar.button("Search")
if submit_button:
with st.spinner('Generating answers...'):
filters = []
display_msgs = []
if JUD_filter:
filters.append("JUD")
display_msgs.append("Judgments")
if AOD_filter:
filters.append("AOD")
display_msgs.append("Assessment of Damages")
if RUL_filter:
filters.append("RUL")
display_msgs.append("Rulings")
if DEC_filter:
filters.append("DEC")
display_msgs.append("Decisions")
st.markdown(f"Searching for {', '.join(map(str, display_msgs))}")
query = user_input
retriever = build_search_engine()
list_of_case_num = query_search_engine(retriever, query, filters)
st.markdown(f"**Found {len(list_of_case_num)} case(s). Showing top {min(5, len(list_of_case_num))} case(s) below with explanation:**")
final_list_of_case_num = list_of_case_num[:5]
asyncio.run(concurrent_tasks(final_list_of_case_num, query))
# expanders = {}
# i=0
# for case_num in list_of_case_num:
# i=i+1
# expanders[case_num] = st.expander(f"Case {i}: {case_num}")
# expanders[case_num].write("")
# results = asyncio.run(concurrent_tasks(list_of_case_num, query))
# for case_num, answer in results:
# with st.expander(f"Open to see more for {case_num}", expanded=True):
# st.markdown(f"## {case_num}")
# st.markdown(answer)