Skip to content

Commit

Permalink
Typo
Browse files Browse the repository at this point in the history
Always more to fix
  • Loading branch information
donskerclass committed Jan 23, 2024
1 parent 7f8a35d commit 1a41086
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion misc/LearningPreferences.html
Original file line number Diff line number Diff line change
Expand Up @@ -416,7 +416,7 @@ <h2>Step 1: Noise: <em>Random Utility Model</em></h2>
<li><span class="math inline">\(x^*=\arg\max_j\{u(x_j)+\zeta_j\}\)</span> induces <span class="math inline">\(P(x^*=x_j)\)</span> (Conditional) Choice probability (CCP)</li>
<li>(Multinomial) Logit model, or <strong>Plackett-Luce</strong> (1959) choice model
<ul>
<li><span class="math inline">\(\zeta_j\overset{iid}{\sim}\text{Gumbel}\implies P(x^*=x_k)=\frac{exp(u(x_k))}{\sum_j exp(u(x_k))}\)</span></li>
<li><span class="math inline">\(\zeta_j\overset{iid}{\sim}\text{Gumbel}\implies P(x^*=x_k)=\frac{exp(u(x_k))}{\sum_j exp(u(x_j))}\)</span></li>
<li>Alternate derivations: maximum entropy among all multinomial distributions, Luce axioms directly over choice probabilities</li>
<li>Special property: <em>Independence of irrelevant alternatives</em>
<ul>
Expand Down
2 changes: 1 addition & 1 deletion misc/LearningPreferences.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ scrollable: true
- Replace $u(x_j)$ with $u(x_j)+\zeta_j$, $\zeta\sim P(\zeta)$
- $x^*=\arg\max_j\{u(x_j)+\zeta_j\}$ induces $P(x^*=x_j)$ (Conditional) Choice probability (CCP)
- (Multinomial) Logit model, or **Plackett-Luce** (1959) choice model
- $\zeta_j\overset{iid}{\sim}\text{Gumbel}\implies P(x^*=x_k)=\frac{exp(u(x_k))}{\sum_j exp(u(x_k))}$
- $\zeta_j\overset{iid}{\sim}\text{Gumbel}\implies P(x^*=x_k)=\frac{exp(u(x_k))}{\sum_j exp(u(x_j))}$
- Alternate derivations: maximum entropy among all multinomial distributions, Luce axioms directly over choice probabilities
- Special property: *Independence of irrelevant alternatives*
- $Pr(a|\{a,b\})/Pr(b|\{a,b\})=Pr(a|\{a,b,c\})/Pr(b|\{a,b,c\})$
Expand Down

0 comments on commit 1a41086

Please sign in to comment.