-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathPC1550.cpp
611 lines (531 loc) · 21 KB
/
PC1550.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
* This class is a keypad emulator for the Digital Security Control's (DSC)
* PC1550. The model number of the keypad it emulates is PC1550RK.
*
* There are four wires that go to the keypad:
* Red - Voltage. This should be about 12V. On my system, a
* voltage meter read 13.3V with a brand new battery. You
* should be able to safely use this as a power supply for the
* Arduino. Simply connect the red line to the pin labeled Vin.
* The Arduino's internal voltage regulator will take care
* of the rest. Because the PC1550 has a backup battery
* supply, your Arduino will continue to be powered even
* when the electrity goes out (quite convenient).
* Black - Ground. If you're using the PC1550 to supply power to
* the Arduino, connect this to the GND pin next to the Vin pin
* Yellow - Clock. The PC1550 control panel determines the clock cycle.
* So long as the processClockCycle() method on this class is
* called more frequently than half a clock cycle from the PC1550
* then we will safely be able to read and write signals from
* the PC1550 control panel. The total cycle is about 1500-1600
* micro-seconds, on average (roughly 650 Hz). Because data
* is sent when the clock is low and read when the clock is high,
* we must run the processClockCycle() method at least every
* 800 micro-seconds. The more frequently the processClockCycle
* method is called, the more likely data transmission will
* succeed (in both directions) without data loss. If you're
* not sure if you can commit to a calling the processClockCycle()
* function frequently enough, then you can use
* processTransmissionCycle() instead which will call
* processClockCycle() and block until a full transmission cycle
* is complete. This could be handy if your program is performing
* another task that could use significant clock cycles between
* calls to processClockCycle(). On the downside,
* processTransmissionCycle() takes between 57ms and 104ms to
* complete.
*
* Connect the clock line up to either a digital or analog pin.
* We only read on this line using digitalRead, so either a
* digital or analog pin will do. Analog PIN 4 is the default
* but can be overriden via the constructor to this class.
*
* Green - Data. The data line is used to send bits to and from the
* PC1550 when the clock is low and high, respectively.
*
* Connect this line to any analog pin. While we can read
* data from the panel using only digital functions, we
* must use analog functions to pull the pin low when we
* want to send data back to the control panel. Analog pin 3
* is the default but can be overridden via the contructor.
*
* There is one additional connection that can be made that can provide
* additinal state information from the alarm controller.
*
* Blue - PGM. The PGM terminal on the DSC PC1550 control panel
* can be programmed to do a number of things. One option
* is to configure it as a 2nd data line. The installation
* manual refers to the PC16-OUT module. This module reads
* data from the PGM line and we can emulate that module here.
* This line does not go to the keypad, and is optional for
* use by this library. See: http://www.alarmhow.net/manuals/
* DSC/Modules/Output%20Modules/PC16-OUT.PDF
* for a listing of options.
*
* The PC1550 control panel starts by holding the clock high for
* roughly 26.5ms. It then clocks out 16 cycles (one cycle is represented
* by the clock going low and then returning to a high state). After
* 16 clock cycles, the PC1550 holds the clock high for roughly 26.5ms
* again, which starts the entire cycle over.
*
* During the 16 clock cycles data is received when the clock is high:
* - The first 8 clock cycles are used to send one octet (byte)
* of data to the keypad (one bit per clock cycle). This byte
* contains information about which zones are currently open
* (what zone lights should display on the keypad). For this
* reason, the first 8 bits are referred to here as "zone bits."
*
* The table below shows how the data is received and interpretted.
* Bit 7 is received first, and bit 0 is recieved last. When bit 7
* is on, then the zone 1 light should be on; when bit 6 is on, then
* the zone 2 light should be on, etc. Bits 1 and 0 are not used.
*
* Zone Bit 7 6 5 4 3 2 1 0
* Zone 1 2 3 4 5 6 (Not Used)
*
* - The second 8 clock cycles send 8 more bits. This byte contains
* information about the other lights that should be enabled on
* the keypad. These bits represent other states and therefore,
* these bits are referred to here as "state bits."
*
* The table below shows how each bit is used. Note that when bit 0
* is on, the keypad beep emits a short beep.
*
* State Bit 7 6 5 4 3 2 1 0
* Ready Armed Memory Bypass Trouble --Not Used-- Beep
*
* Between receipt of the zone bits, data can be sent back to the control
* panel when the clock is low. In other words, the panel sends out its
* bits when the clock is high and the keypad sends back its data when the
* clock is low.
*
* The keypad only sends back 7 bits-- one bit between each of the 8 zone
* bits received. These bits represent a button press. When taking the
* keypad as a table (rows and columns) of buttons, the first three
* bits received represent the column of the button pressed. The last
* four bits represent the row of the button pressed:
*
* First Three Bits Last 4 Bits
* Column 1 100 Row 1 0001
* Column 2 010 Row 2 0010
* Column 3 001 Row 3 0100
* Row 4 1000
* Row 5 0000
*
* No Key Pressed 000 0000
*
* Encoding bits in the data line:
* When the data line is LOW the corresponding bit should be ON.
* When the data line is HIGH the corresponding bit should be OFF.
*
* If the PGM line is connected, then 16 more bits of data are received
* on this line if (and ONLY IF) the PGM line is configured in PC-16OUT
* mode. Refer to the PC1550 installation manual for instructions on
* how to configure this mode. The bits meaning follow:
* 0 - PGM Output (whatever the PGM is configured for)
* (This library assumes PGM terminal has been programmed for
* strobe output. This sets bit 0 to the on position
* when the alarm goes off. And the bit remains set until
* the panel is disarmed).
* 1 - Fire buttom pressed (on for 4 sec)
* 2 - Aux button pressed (on for 4 sec)
* 3 - Panic button pressed (on for 4 sec)
* 4 - Armed
* 5 - Armed
* 6 - Armed with bypass (on for 5 sec)
* 7 - Trouble
* 8 - Fire (on when fire alarm is latched in)
* 9 - Not used
* 10 - Zone 6 tripped while armed
* 11 - Zone 5 tripped while armed
* ...
* 15 - Zone 1 tripped while armed
*
* For the PGM terminal to work, it will need to be connected to the
* AUX+ terminal with a 1k Ohm resistor (for PC1550s)
*/
#include "PC1550.h"
/* ==================================================================== */
/* S T A T I C / P R I V A T E H E L P E R S */
/* Convert ASCII key values to the byte values for key transmission */
/* ==================================================================== */
char PC1550::getKeyChar(byte value){
switch(value)
{
case 0b01000001: return '1';
case 0b00100001: return '2';
case 0b00010001: return '3';
case 0b01000010: return '4';
case 0b00100010: return '5';
case 0b00010010: return '6';
case 0b01000100: return '7';
case 0b00100100: return '8';
case 0b00010100: return '9';
case 0b01001000: return '*';
case 0b00101000: return '0';
case 0b00011000: return '#';
case 0b01000000: return 'F';
case 0b00100000: return 'A';
case 0b00010000: return 'P';
default: return '\0';
}
}
uint8_t PC1550::getKeyValue(char key){
switch(key)
{
case '1': return 0b01000001;
case '2': return 0b00100001;
case '3': return 0b00010001;
case '4': return 0b01000010;
case '5': return 0b00100010;
case '6': return 0b00010010;
case '7': return 0b01000100;
case '8': return 0b00100100;
case '9': return 0b00010100;
case '*': return 0b01001000;
case '0': return 0b00101000;
case '#': return 0b00011000;
case 'F': return 0b01000000;
case 'A': return 0b00100000;
case 'P': return 0b00010000;
default: return 0;
}
}
/* ==================================================================== */
/* S T A T E I N F O A N D M G M T */
/* ==================================================================== */
bool PC1550::keypadStateChanged(){
return this->bStateChanged;
}
char PC1550::keyPressed(){
if (!bKeyPressed)
return '\0';
return getKeyChar(this->available_keypad_data);
}
char PC1550::keyReleased(){
if (key_released_data == 0)
return '\0';
return getKeyChar(this->key_released_data);
}
bool PC1550::Zone1Light(){
return (available_controller_data >> 15);
}
bool PC1550::Zone2Light(){
return (available_controller_data << 1 >> 15);
}
bool PC1550::Zone3Light(){
return (available_controller_data << 2 >> 15);
}
bool PC1550::Zone4Light(){
return (available_controller_data << 3 >> 15);
}
bool PC1550::Zone5Light(){
return (available_controller_data << 4 >> 15);
}
bool PC1550::Zone6Light(){
return (available_controller_data << 5 >> 15);
}
bool PC1550::ReadyLight(){
return (available_controller_data << 8 >> 15);
}
bool PC1550::ArmedLight(){
return (available_controller_data << 9 >> 15);
}
bool PC1550::MemoryLight(){
return (available_controller_data << 10 >> 15);
}
bool PC1550::BypassLight(){
return (available_controller_data << 11 >> 15);
}
bool PC1550::TroubleLight(){
return (available_controller_data << 12 >> 15);
}
bool PC1550::Beep(){
return (available_controller_data << 15 >> 15);
}
uint16_t PC1550::consecutiveBeeps(){
return iConsecutiveBeeps;
}
bool PC1550::atTransmissionEnd(){
return bTransmissionEnd;
}
uint16_t PC1550::consecutiveKeyPresses(){
return iConsecutiveKeyPressCycles;
}
bool PC1550::readyForKeyPress(){
if (keyHoldCycles > 0 || cyclesWithoutKey < 1){
return false;
}
return true;
}
bool PC1550::sendKey(char c, uint8_t holdCycles){
if (!readyForKeyPress())
return false;
uint8_t keyval = getKeyValue(c);
if (keyval == 0) {return false; }
this->key_to_send = keyval;
this->keyHoldCycles = holdCycles;
return true;
}
//configured based on programming of PC1550
bool PC1550::PGMOutput(){
return (available_pc16out_data & 0b0000000000000001) > 0;
}
//active for 4 seconds after button is held for 20 clock cycles
bool PC1550::fireButtonTripped(){
return (available_pc16out_data & 0b0000000000000010) > 0;
}
//active for 4 seconds after button is held for 20 clock cycles
bool PC1550::auxButtonTripped(){
return (available_pc16out_data & 0b0000000000000100) > 0;
}
//active for 4 seconds after button is held for 20 clock cycles
bool PC1550::panicButtonTripped(){
return (available_pc16out_data & 0b0000000000001000) > 0;
}
//constantly on whenever system is armed
bool PC1550::systemArmed(){
return (available_pc16out_data & 0b0000000000110000) > 0;
}
//pulses for 5 seconds when the system is armed with bypass
bool PC1550::armedWithByPass(){
return (available_pc16out_data & 0b0000000001000000) > 0;
}
//active during a trouble condition
bool PC1550::systemTrouble(){
return (available_pc16out_data & 0b0000000010000000) > 0;
}
//active so long as fire alarm is latched in
bool PC1550::fireAlarmTripped(){
return (available_pc16out_data & 0b0000000100000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone6Tripped(){
return (available_pc16out_data & 0b0000010000000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone5Tripped(){
return (available_pc16out_data & 0b0000100000000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone4Tripped(){
return (available_pc16out_data & 0b0001000000000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone3Tripped(){
return (available_pc16out_data & 0b0010000000000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone2Tripped(){
return (available_pc16out_data & 0b0100000000000000) > 0;
}
//will only return true when system is armed
bool PC1550::Zone1Tripped(){
return (available_pc16out_data & 0b1000000000000000) > 0;
}
//returns true of any of the zones are tripped when system is armed
bool PC1550::AlarmTripped(){
return (available_pc16out_data & 0b1111110000000000) > 0;
}
/* ==================================================================== */
/* C O N S T R U C T I O N A N D P R O C E S S I N G */
/* ==================================================================== */
PC1550::PC1550(uint8_t datapin, uint8_t clockpin, uint8_t pgmpin){
this->datapin = datapin;
this->clockpin = clockpin;
this->pgmpin = pgmpin;
pinMode(datapin,INPUT);
pinMode(clockpin,INPUT);
pinMode(pgmpin,INPUT);
//when nothing else is driving the data pin, we want
//it to remain in the low state. This sets us up to (by default)
//send "No Key Press" to the controller.
digitalWrite(datapin,LOW);
//set our control and state variables up
synchronized = false;
last_read = micros();
last_clock = HIGH;
key_to_send = 0;
keyHoldCycles = 0;
bKeyPressed = false;
key_released_data = 0;
cyclesWithoutKey = 0;
transmitting = false;
controller_bits_read = 0;
controller_data = 0;
available_controller_data = 0;
keypad_bits_read = 0;
keypad_data = 0;
available_keypad_data = 0;
keypad_bits_sent = 0;
iConsecutiveBeeps = 0;
iConsecutiveKeyPressCycles = 0;
bStateChanged = false;
bTransmissionEnd = false;
pc16out_data = 0;
available_pc16out_data = 0;
}
//this calls processClockCycle() until a full 16 bits are read and processed
//this takes (at a minimum) 57ms. If out of synchronization, this could
//take twice as long (104ms).
void PC1550::processTransmissionCycle(){
do{
processClockCycle();
}
while (!atTransmissionEnd());
}
//This processes every clock cycle from the PC1550 control panel.
//This should be called within the Arduino loop() function at least
//every 800us. If you're not sure you can commit to that frequency
//then call processTransmissionCycle() which will hold control for
//at least one full transmission cycle
void PC1550::processClockCycle(){
//clear the bTransmissionEnd flag
bTransmissionEnd = false;
//read our clock and data values
boolean clock = digitalRead(clockpin);
boolean data = digitalRead(datapin);
boolean pgmData = digitalRead(pgmpin);
//how long has it been since we last read a byte?
unsigned long time_since_last_read = micros() - last_read;
//if the clock is hanging (clock line is remains HIGH so clock
//variable remains false for an extended period) then the controller
//is telling us that it is done with its last transmission cycle.
//we can now enter a synchronized state
if (!clock && time_since_last_read > 25000 && time_since_last_read < 28000){
//at this point we should be synchronized
synchronized = true;
//reset the cycle
controller_bits_read = 0;
controller_data = 0;
pc16out_data = 0;
keypad_bits_read = 0;
keypad_data = 0;
keypad_bits_sent = 0;
}
//key press bits are transmitted with the clock is HIGH
//a HIGH clock line means the clock variable will be false
if (!clock && last_clock != clock){
//we read key presses via the 7 bits transmitted BETWEEN
//the first 8 bits received from the control plannel
if (controller_bits_read > 0 && controller_bits_read < 8){
//The Atmega on the Arduino has one ADC that is multiplexed for all the
//analog pins. When we do an analogRead(), a multiplexer connects the
//pin we are reading to the ADC. This works fine for low impedance
//voltage sources but it takes time for a high impedance sensor to
//change the voltage at the ADC after this switch of pins.
//so we read once to switch pins
digitalRead(datapin);
//wait 100 microseconds to ensure the ADC has the right voltage
delayMicroseconds(100);
//then we read again
uint8_t bitValue = (uint8_t)(!digitalRead(datapin));
//update our keypad_data field and increment the count of bits read
keypad_data |= (bitValue << (6 - keypad_bits_read));
keypad_bits_read++;
}//end if between bits 1 and 8
}//end if clock is HIGH/OFF
//we read all other bits on a LOW clock line
//a LOW clock line will mean the clock variable will be true
if (clock && last_clock != clock){
//update the last time we read a bit
last_read = micros();
//store the bit read (controller data)
uint16_t dataValue = ((uint16_t)data) << (15 - controller_bits_read);
controller_data |= dataValue;
//store the bit read (pc16out data)
dataValue = ((uint16_t)pgmData) << (15 - controller_bits_read);
pc16out_data |= dataValue;
//update the number of bits read
controller_bits_read++;
//if this is the first bit, see if we should be sending a key
if (synchronized && controller_bits_read == 1){
if (key_to_send != 0){
cyclesWithoutKey = 0;
transmitting = true;
}
else
cyclesWithoutKey++;
}
//sanity check
if (controller_bits_read >= 8)
transmitting = false;
//this will let the voltage float to whatever the panel is driving
//which will allow other keypads to drive the line and for us to
//see what other keypads are driving between receive bits
//if no other keypad is driving, the line will pull high since
//the dsc 1550 panel is pulling high...so the line should go back to 5v
pinMode(datapin,INPUT);
//if in transmit mode
if (transmitting){
//it is going to pull HIGH by default, so we only drive
//low if the bit for this place in the sequence is set
if (((key_to_send >> (7-controller_bits_read)) & 0x01)){
//this will effectively pull the voltage low on the line
//getting it close to zero (if not zero)
pinMode(datapin,OUTPUT);
}
//if we've sent the last bit, we can clear our key sending fields
if (controller_bits_read == 7){
if (keyHoldCycles > 0) keyHoldCycles--;
if (keyHoldCycles == 0){
key_to_send = 0;
}
}
}//end if we have a key to write
}
//if we successfully received 16 bits, then update available data
if (synchronized && controller_bits_read == 16){
if (this->available_controller_data != controller_data)
this->bStateChanged = true;
else
this->bStateChanged = false;
//if we received keypad_data
if (keypad_data != 0){
//if it's the exact same as last time
if (this->available_keypad_data == keypad_data){
bKeyPressed = false;
key_released_data = 0;
iConsecutiveKeyPressCycles++;
}
else if (this->available_keypad_data == 0){
bKeyPressed = true;
key_released_data = 0;
iConsecutiveKeyPressCycles = 1;
}
else if (this->available_keypad_data != 0){
//this is a highly unlikely state
//where two different key-presses occur in back to back cycles
//the PC1550 controller does require a cycle of no transmission
//between each key-press so this *should* never occur
bKeyPressed = true;
iConsecutiveKeyPressCycles = 1;
this->key_released_data = available_keypad_data;
}
}
//if keypad_data == 0
else{
if (this->available_keypad_data != 0){
bKeyPressed = false;
this->key_released_data = available_keypad_data;
}
else if (this->available_keypad_data == 0){
this->key_released_data = 0;
bKeyPressed = false;
iConsecutiveKeyPressCycles = 0;
}
}
this->available_keypad_data = keypad_data;
this->available_controller_data = controller_data;
this->available_pc16out_data = this->pc16out_data;
//update iConsecutiveBeeps
if (!Beep()) iConsecutiveBeeps = 0;
else iConsecutiveBeeps++;
//indicate we are at the end of our transmission cycle
bTransmissionEnd = true;
//just in case the next call to processClockCycle is delayed
//let's assume that we lose our synchronization
synchronized = false;
controller_bits_read = 0;
}
last_clock = clock;
}//end processClockCycle()