-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic_weather_correlation.py
73 lines (47 loc) · 2.31 KB
/
traffic_weather_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from datetime import datetime, timedelta
from network_training import train_double_barreled_network, train_outer_networks
from dataPandas import read_in_streams
import os
import theano.tensor as T
time_format = '%Y-%m-%dT%H:%M'
window_duration = timedelta(hours=1)
def setup():
datapath = os.path.join(os.path.expanduser('~'), 'PycharmProjects', 'CSV2DataStream', 'Analysis')
main_path = os.path.join(datapath, 'traffic')
context_path = os.path.join(datapath, 'weather')
main_streams, main_features, context_stream, context_features = read_in_streams(main_path, context_path)
start, end = main_streams.values()[0].get_time_range()
context_stream.fill_in_missing_values(start, end)
for key, stream in main_streams.items():
# try:
stream.fill_in_missing_values(start, end)
# break
# except Exception as e:
# print key
# for key, dup in enumerate(list(stream.data.index.duplicated())):
# if dup:
# print stream.data.index[key]
return main_streams, main_features, context_stream, context_features, start, end
def train_network(main_streams, main_features, context_stream, context_features, start, end):
current_date = start
# while current_date<end:
# window_end = current_date + window_duration
context_window = context_stream.transform_time_window_for_neural_network_input(start, end)
for main_stream in main_streams:
main_window = main_stream.transform_time_window_for_neural_network_input(start, end, ['avgSpeed', 'vehicleCount'])
u, v, x_input, y_input, min_cost = train_double_barreled_network(context_window, main_window, 100, (None, 1, 2))
loss_u, loss_v = train_outer_networks(u, v, x_input, y_input, context_window, main_window, 100)
from pprint import pprint
print '#####################'
print 'Correlation'
pprint(min_cost)
#
print '#####################'
print 'MSE u'
pprint(loss_u)
print '#####################'
print 'MSE v'
pprint(loss_v)
if __name__ == '__main__':
main_streams, main_features, context_stream, context_features, start, end = setup()
train_network(main_streams.values()[:1], main_features, context_stream, context_features, start, end )