forked from blt2114/CDE_with_BNF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flow_network_bayes.py
477 lines (411 loc) · 22.1 KB
/
flow_network_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from __future__ import division
import sys
import network
import utils
import flows
import tensorflow as tf
import numpy as np
class flow_network_bayes(network.model_base):
"""flow_network_bayes is a subclass of model_base for networks with normalizing
flows on top.
The flow networks consists of an MLP which is used to parameterize the
target distribution, whose form is defined by a normalizing flow.
"""
def __init__(self, n_flows=1, alpha_std=1., beta_std=1.0, z_std=1.0,
init_sigma_params=1e-5, bayes_layers=None, noise_mag=1.0, init_sigma_obs=1.0, lmbda=.5,
length_scale=1., learn_ls=False, learn_lmbda=False, inference='VI',
w_prior_sigma=None, anneal_in_KL=False, nonlinearity='tanh',
learn_sigma_weights=True, learn_beta_std=False,
learn_sigma_obs=True, **kwargs):
"""initialize a network with normalizing flows.
We must make several chooses in our initialization. Namely:
the initial values for the posterior means
the initial values for the posterior variances
the prior variances, which may be different by layer and may be
learned later in optimization.
Args:
n_flows: number of stages in the normalizing flows.
init_sigma_params: the initial posterior variances for the
weights.
bayes_layers: list of layers in which to track posterior
variances.
lmbda: interpolation between homoscedastic and heteroscedastic,
as lmbda goes to 0, we have a homoscedastic system Bounded (0,1)
length_scale: defines a pre-activation scaling of hidden units.
this can be thought of as defining the steepness of the
nonlinearity, which in part controls the fucntion's length scale.
learn_ls: set true to learn the length scale of the network as
part of inference.
learn_lmbda: set true to learn the degree of heteroscedasticity
as part of inference.
learn_beta_std: set true to learn beta_std
learn_sigma_weights: set to False to use weight noise.
inference: inference method to use, must be VI, MAP, or MLE
"""
self.noise_mag = noise_mag
self.learn_sigma_obs = learn_sigma_obs
self.w_prior_sigma = w_prior_sigma
self.init_sigma_obs = init_sigma_obs
self.alpha_std = tf.get_variable('alpha_std',
initializer=tf.constant(np.float32(alpha_std)))
self.beta_std = tf.get_variable('beta_std',
initializer=tf.constant(np.float32(beta_std)))
self.z_std = tf.get_variable('z_std',
initializer=tf.constant(np.float32(z_std)))
self.learn_sigma_weights = learn_sigma_weights
assert lmbda <= 1. and lmbda >= 0.
assert inference == 'MAP' or inference == 'VI' or inference == 'MLE'
self.inference = inference
self.lmbda_val = lmbda
if learn_lmbda:
self.log_lmbda = tf.get_variable('log_lmbda', initializer=tf.constant(
np.float32(np.log(lmbda/(1.-lmbda)))))
self.lmbda = tf.sigmoid(self.log_lmbda)
else:
self.lmbda = lmbda
log_length_scale = utils.un_softplus(length_scale)
self.log_length_scale = tf.get_variable('log_length_scale',
initializer=tf.constant(np.float32(log_length_scale)))
self.length_scale = tf.nn.softplus(self.log_length_scale)
self.nonlinearity = nonlinearity
## Set initial posterior variances
if inference != 'VI':
init_sigma_params = 1e-7
self.init_sigma_params = init_sigma_params
print "initializing , bayes layers: ", bayes_layers
if bayes_layers == None:
self.bayes_layers = list(range(1,len(kwargs['n_hidden_units'])+2))
else:
self.bayes_layers = bayes_layers
n_outputs = 1 + 3*n_flows
network.model_base.__init__(self, n_outputs=n_outputs, **kwargs)
# This calls construct network and defines: self.nn_mus,
# self.nn_sigmas, self.KL_BNN and self.nn_prior_sigma
### Construct likelihood using normalizing flows
# In this case, the likelihood is defined by our normalizing flow.
self.flows, self.KL_flows = self.construct_flow(
self.outputs, self.y, n_flows+1, n_samples=self.n_samples)
# Get the log losses for individual samples and the mean log loss
# both for individual samples and averaged across the posterior
# Specifically, self.nlog_l represents the expected log likelihood
# in the ELBO
self.KL = self.KL_flows + self.KL_BNN
self.nlog_ls, self.nlog_l, self.nlog_l_eval = self.likelihood(self.y, self.flows)
# If we are doing a 2-stage training, we will only optimize wrt this
# full set of parameters in the 2nd stage.
self.all_params = list(self.params)
self.learn_ls, self.learn_lmbda = learn_ls, learn_lmbda
if learn_ls: self.all_params.append(self.log_length_scale)
if learn_lmbda: self.all_params.append(self.log_lmbda)
if learn_beta_std: self.all_params.append(self.beta_std)
iteration_after_switch = tf.cast(tf.abs(self.epoch-self.epoch_switch_opt)+
(self.epoch-self.epoch_switch_opt), tf.float32)
if anneal_in_KL:
assert inference != 'MLE'
KL_weight = 1. - tf.exp(-0.03*(tf.cast(tf.abs(self.epoch-self.epoch_switch_opt)+
(self.epoch-self.epoch_switch_opt), tf.float32))/2.)
elif inference == 'MLE':
KL_weight = 0.
else:
KL_weight = 1.
### Construct Cost (likelihood and KL)
self.KL_weighted = self.KL*KL_weight # weight if reverse anealing KL in.
# scale expected log likelihood by number of datapoints
if self.noise_dim != 0:
assert inference != "VI"
self.cost = self.nlog_l_eval*self.Y.shape[0] + self.KL_weighted
else:
self.cost = self.nlog_l*self.Y.shape[0] + self.KL_weighted
self.set_summaries()
### set 2 optimizer stages
self.construct_optimizer()
def set_summaries(self):
tf.summary.histogram("nlog_ls",self.nlog_ls)
tf.summary.scalar("nlog_l",self.nlog_l)
tf.summary.scalar("nlog_l_eval",self.nlog_l_eval)
tf.summary.scalar("cost", self.cost)
tf.summary.scalar("KL", self.KL)
tf.summary.scalar("KL_BNN", self.KL_BNN)
tf.summary.scalar("KL_flows", self.KL_flows)
tf.summary.scalar("beta_std", self.beta_std)
if self.learn_ls:
tf.summary.scalar("length_scale", self.length_scale)
if self.learn_lmbda and self.lmbda.shape != []:
tf.summary.scalar("lmbda_y1", self.lmbda[0])
tf.summary.scalar("lmbda_y2", self.lmbda[1])
elif self.learn_lmbda:
tf.summary.scalar("lmbda", self.lmbda)
def construct_network(self, n_units, n_samples=1, noise_dim=0,
keep_p=1., nonlinearity=True, input_layer=None, init_params=None, name=""):
"""construct_network establishes all weight matrices and biases and
connects them.
The outputs may include parameters of the flow
Args:
n_units: the sizes of all layers including input and output
layer
n_samples: number of MC samples of noise (not variational samples)
noise_dim: dimension of random noise
input_layer: the input tensor, if none is provided, we simply
use self.x
init_params: values for the weights and biases to set as the initial
means, this is a dictionary indexed as in self.weights and
self.biases
"""
print "constructing network, n_units: ",n_units
# TODO use kwargs for more elagant solutions to being called by this
# base class
assert keep_p ==1. and nonlinearity
# we cannot handle input noise and be Bayesian at this time.
if noise_dim != 0: assert self.bayes_layers == []
### Define parameters of the network
self.weights, self.biases, KL = {}, {}, 0.
self.layers = []
# Establish paramters of appromiate posterior over weights and
# biases.
print "constructin net, n_units:", n_units
for l in range(1, len(n_units)):
with tf.variable_scope(name+'Layer_%d'%l):
n_in, n_out = n_units[l-1], n_units[l]
if l==1: n_in += self.noise_dim
# use non negligible uncertainty if we are doing VI
sigma_init = self.init_sigma_params if l in self.bayes_layers else 1e-7
if self.w_prior_sigma is not None:
w_prior_sigma, b_prior_sigma = self.w_prior_sigma, self.w_prior_sigma*np.sqrt(n_in)
else:
w_prior_sigma, b_prior_sigma = np.sqrt(1./(n_in)), 1.
# We use same init_sigma for weights and biases.
# If initial parameters have been provided, we use those.
if init_params is not None:
(w_mu, w_logstd), _, w_KL = utils.set_q(name+"w_%d"%l,
sigma_prior=w_prior_sigma, sigma_init=sigma_init,
n_samples=0, size=[n_in, n_out], save_summary=True,
mu_init_values=init_params['w_%d'%l])
(b_mu, b_logstd), _, b_KL = utils.set_q(name+"b_%d"%l,
sigma_prior=b_prior_sigma, sigma_init=sigma_init,
n_samples=0, size=[n_out], save_summary=True,
mu_init_values=init_params['b_%d'])
else:
if l == len(n_units)-1:
prior_scaling = np.array([1]+[self.z_std, self.alpha_std,
self.beta_std]*int((n_out-1)/3))
w_prior_sigma *= prior_scaling
b_prior_sigma *= prior_scaling
(w_mu, w_logstd), _, w_KL = utils.set_q(name+"w_%d"%l,
sigma_prior=w_prior_sigma, mu_init_mu=0.,
mu_init_sigma=w_prior_sigma, sigma_init=sigma_init,
n_samples=0, size=[n_in, n_out], save_summary=True)
(b_mu, b_logstd), _, b_KL = utils.set_q(name+"b_%d"%l,
sigma_prior=b_prior_sigma, mu_init_mu=0.,
mu_init_sigma=b_prior_sigma, sigma_init=sigma_init,
n_samples=0, size=[n_out], save_summary=True)
self.weights['w_%d_mu'%l], self.weights['w_%d_std'%l] = w_mu, tf.nn.softplus(w_logstd)
self.biases['b_%d_mu'%l], self.biases['b_%d_std'%l] = b_mu, tf.nn.softplus(b_logstd)
# For the final layer, we must scale the weights defining
# the parameters of the normalizing flows.
# We scale the input dependent portion (coming
# from the weights and previous layer activations) by lmbda, we
# will finally add additional offsets and scalings when we build
# the normalizing flow.
if l == (len(n_units) - 1) and n_out != 1:
# construct mask
mask = np.ones([n_out],dtype=np.float32)
# we don't want to adjust the first output.
mask[1:] *= self.lmbda_val
self.weights['w_%d_mu'%l] *= mask
self.weights['w_%d_std'%l] *= mask
self.params += [w_mu, b_mu]
KL += w_KL + b_KL
if l in self.bayes_layers and self.learn_sigma_weights and self.inference == 'VI':
print "adding uncertainties for layer %d"%l
# if we are not being bayesian in this layer,
# we don't learn the variances of these parameters.
self.params += [w_logstd, b_logstd]
# Separate out weights for input noise
if noise_dim !=0 :
noise_weights_mu = self.weights['w_1_mu'][n_units[0]:]
noise_weights_std = self.weights['w_1_std'][n_units[0]:]
self.weights['w_1_mu'] = self.weights['w_1_mu'][:n_units[0]]
self.weights['w_1_std'] = self.weights['w_1_std'][:n_units[0]]
# Add an extra dimension to correspond to samples.
prev_layer = tf.stack([self.x]*n_samples) if input_layer is None else input_layer
self.layers.append(prev_layer)
# shape is [n_samples, ?, dim(x)]
### Define activations in each layer
for l in range(1,len(n_units)):
print "defining activations in layer %d"%l
# Multiply with weight matrix and add bias
prev_layer = tf.reshape(prev_layer, [-1, n_units[l-1]])
layer_pre_bias = tf.matmul(prev_layer, self.weights['w_%d_mu'%l])
layer_pre_bias = tf.reshape(layer_pre_bias, [n_samples, -1, n_units[l]])
# Shape of layer_pre_bias is [n_samples, ?, n_units[l]]
# add mean bias term
layer = tf.add(layer_pre_bias, self.biases['b_%d_mu'%l][None, None, :])
# Calculate the noise in each hidden unit.
# must use absolute value of activation because final layer may
# have negative values.
layer_var = tf.matmul(tf.reshape(prev_layer**2,[-1,
n_units[l-1]]), self.weights['w_%d_std'%l]**2)
layer_var = tf.reshape(layer_var, [n_samples, -1, n_units[l]])
layer_var += self.biases['b_%d_std'%l]**2
# Add noise at the first layer
if l == 1 and noise_dim !=0 :
# we don't use different noise for each sample of weights.
input_noise = tf.random_uniform([n_samples, noise_dim], minval=-self.noise_mag,
maxval=self.noise_mag)
# To add noise, we must expand in variable batch size
# dimension.
layer_var += tf.matmul(input_noise**2,
noise_weights_std**2)[:, None, :]
layer_noise = tf.matmul(input_noise, noise_weights_mu)
layer += layer_noise[:, None, :]
# Now sample noise and add scaled noise.
if l in self.bayes_layers and self.inference == 'VI':
# This constitutes the local reparameterization trick.
print "adding noise to graph"
eps = tf.random_normal(name='eps_%d'%l, mean=0.,
stddev=1.0, shape=[n_samples, 1, n_units[l]])
layer_sigma = tf.sqrt(layer_var)
layer += layer_sigma*eps
with tf.name_scope(name+"Neural_Network_Activations_%d"%l):
tf.summary.histogram(name+"Layer_%d_sigmas"%l, layer_sigma)
with tf.name_scope(name+"Neural_Network_Activations_%d"%l):
tf.summary.histogram(name+"Layer_%d_activations_pre_tanh"%l, layer)
# Add nonlinearity
if l != (len(n_units) - 1):
if self.nonlinearity == 'ReLU':
layer = tf.nn.relu(layer/self.length_scale)
else:
assert self.nonlinearity == 'tanh'
layer = tf.nn.tanh(layer/self.length_scale)
with tf.name_scope(name+"Neural_Network_Activations_%d"%l):
tf.summary.histogram(name+"Layer_%d_activations_post_tanh"%l,layer)
prev_layer = layer
self.layers.append(prev_layer)
self.KL_BNN = KL
return prev_layer
def set_linear_flow(self, b, name=""):
"""set_linear_flow constructs the first stage of normalizing flow,
which is a linear flow.
This function adds the necessary parameters to self.params.
The offset term is entirely a funtion of network output
Args:
b: the output of the network, to be used for defining the
offset, b
Returns: the flow object and the KL divergence for the approximate posterior
"""
# the slope is learned by VI, establish approximate
# posterior. We use the initial level of observation
# noise as the prior mean.
log_m_prior_sigma = 2.0
(log_m_mu, log_m_logstd), log_m, log_m_KL = utils.set_q(
name=name+"log_m", mu_prior=utils.un_softplus(1.0), sigma_prior=log_m_prior_sigma,
mu_init_mu=utils.un_softplus(self.init_sigma_obs), mu_init_sigma=0.0,
sigma_init=self.init_sigma_params, n_samples=self.n_samples, save_summary=True)
m = tf.nn.softplus(log_m, name=name+"linear_flow_slope")
# actually create the flow
flow = flows.LinearFlow(b=b, m=m)
# add variational parameters of linear flow to list.
KL = log_m_KL
if self.learn_sigma_obs: self.params += [log_m_mu]
if self.inference == 'VI': self.params += [log_m_logstd]
# Create Tensorboard logs
tf.summary.histogram(name+"LinearFlow_b",b)
tf.summary.histogram(name+"LinearFlow_m",m)
return flow, KL
def set_flow(self, flow_id, output_z, output_a, output_b, lmbda=None,
name="", prev_flow=None):
"""
Args:
flow_id: id for specifying name of flow
output_z: output for parameter z
output_a: output for parameter a
output_b: output for parameter b
prev_flow: provide a previous flow if chaining outputs of flows
together.
Returns:
returns flow object and KL
"""
# actually create flow
flow = flows.RadialFlow(output_z, output_a, output_b, prev=prev_flow)
tf.summary.histogram(name+"flow_%d_alpha_hat"%flow_id,output_a)
tf.summary.histogram(name+"flow_%d_beta_hat"%flow_id,output_b)
tf.summary.histogram(name+"flow_%d_zi"%flow_id,flow.z_0)
return flow
def construct_flow(self, outputs, y, n_flows, n_samples, lmbda=None,
name="", chain_flows=False):
"""construct_flow builds and links together the normalizing flow and
establishes the log likelihood of samples.
We construct the flow parameterized by the batch-normalized outputs
of a neural network. This means that each output has zero mean and
unit variance.
However, we not not want to enforce this trait onto the parameters
of the normalizing flows. Instead we want to learn the expectation
(like the bias term when we do not use batch_norm)
The variance for each of these parameters is a hyper-parameter,
which determines the extent to which the system is heteroscedastic.
In the limit of this being very small, the outputs of the network
have no bearing on the values of the paramters. For large values,
these parameters will change dramatically.
The expected values have distinct interpretations for each of the
parameters.
For z_0, this is the std-dev of location of the inflection point of the
radial flows.
For beta, this is the std-dev of the log-derivative of the flows.
For alpha, this is the std-dev of the pre-softplus rate of linear decay.
Additionally, output_scaling controls the variance of the predicted
offset from the normalizing flows.
args:
y: the placeholder tensor for the outputs to be passed through the
flow.
n_flows: number of stages in the flow.
n_samples: number of MC samples
chain_flows: set true to link flows together, which keeps
the z_0s grounded in the output space.
Returns:
new parameters of flows (i.e. those not defined as outputs of
the network) and the negative log likelihoods
"""
all_flows = []
print "outputs.shape", outputs.shape[-1]
print "n_flows", n_flows
assert outputs.shape[-1] == (n_flows-1)*3 + 1
with tf.name_scope(name+"Normalizing_Flows"):
with tf.variable_scope(name+'network'):
## Construct the Radial Flows
out_idx = 0 # keep track of which output we are working with.
## Construct the first, linear stage of the flow.
flow, KL_flow = self.set_linear_flow(outputs[:, :,
out_idx], name=name); out_idx += 1
all_flows.append(flow)
for f_i in range(1, n_flows):
flow = self.set_flow(f_i, outputs[:, :, out_idx],
outputs[:, :, out_idx+1], outputs[:, :,
out_idx+2], name=name,
prev_flow=flow if chain_flows else None)
all_flows.append(flow)
out_idx += 3
## Check that every output has been used
assert out_idx == outputs.shape[-1]
return all_flows, KL_flow
def likelihood(self, y, all_flows):
### Link the stages of the flow together. The zs are ordered from the
# base distribution to the observation distribution.
# in this case, this is the sum of log jacobian determinents.
y = tf.stack([y]*self.n_samples)
zs, log_dz0_dy = flows.link(all_flows, y[:, :, 0])
# Consider the observed values mapped through flows and make histogram.
self.z_0 = zs[-1]
print "self.z_0.shape", self.z_0.shape
print "log_dz0_dzy.shape", log_dz0_dy.shape
tf.summary.histogram("z_0", self.z_0)
# Define the base distribution that will be warped as unit gaussian
dist = tf.contrib.distributions.Normal(loc=0., scale=1.)
# Calculate the negative log likelihood
log_p_base = dist.log_prob(self.z_0)
nlog_ls = -(log_dz0_dy+log_p_base - tf.reduce_sum(tf.log(self.y_std)))
nlog_l= tf.reduce_mean(nlog_ls)
### Do log sum exp
self.nlog_ls_eval = -tf.reduce_logsumexp(-nlog_ls, axis=0)
self.nlog_ls_eval += tf.log(float(self.n_samples))
nlog_l_eval = tf.reduce_mean(self.nlog_ls_eval)
return nlog_ls, nlog_l, nlog_l_eval