forked from blt2114/CDE_with_BNF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flows.py
437 lines (374 loc) · 17 KB
/
flows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
""" This Module contains normaling flow mappings and inverses"""
import tensorflow as tf
import utils
import numpy as np
class LinearFlow:
"""LinearFlow is a normalizing flow to capture variance and mean
"""
def __init__(self, b, m):
"""__init__ initializes the flow.
out = m*(x-b)
Args:
b: offset of linear function
m: slope of linear function
"""
self.m, self.b = m, b
def project(self, z):
"""project is the forward mapping
"""
return z*self.m + self.b
def invert(self, out):
"""invert returns the inverse of the flow called on out, and its derivative
"""
z_in, dz_dy = (out - self.b) / self.m, 1. / self.m
return z_in, dz_dy
def project_old(self, z):
"""project is the forward mapping
"""
return (z-self.b)*self.m
def invert_old(self, out):
"""invert returns the inverse of the flow called on out, and its derivative
"""
z_in, dz_dy = out / self.m + self.b, 1. / self.m
return z_in, dz_dy
class LeakyReLUFlow:
"""LeakyReLUFlow is a normalizing flow that is nonlinear
"""
def __init__(self, b, m):
"""__init__ initializes the flow.
out = m1*x+ I[x>b](x-b)(m2-m1)+I[b<0](m2-m1)b
where m1*m2 = 1
Args:
b: offset of linear function
m: slope of linear function
"""
self.m, self.m2, self.b = m, 1./m, b
self.m_inv, self.m2_inv = 1./self.m, 1./self.m2
# if b is greater than zero (i.e. the kink is after the origin), the bias of the inverse is simlpe b*m
# if the bias is less than zero, the kink is at m2*b, where b is negative, so = -|b*m2|
# b_inv = b*m1 - ( I[b < 0] * |b| * ( m2 + m1 ) )
self.b_inv = b*self.m + tf.to_float(tf.less(self.b, 0.))*b*(self.m2+self.m)
def mapping(f_in, m, m2, b):
"""mapping returns mapping of a piecewise linear function
Args:
f_in: iinput tensor
m: slope of the left linear segment
m2: slope of the right linear segment
b: the location (on x-axis) of the kink between the two slopes
"""
f_out = m*f_in
# add in slow from m2
f_out += tf.to_float(tf.less(b, f_in))* (m2-m)*(f_in-b) # I[b < f_in]* (m2-m1)*(f_in-b)
# adjust for the bias term, if the kink is before the origin.
f_out += tf.to_float(tf.less(b,0))*(m2-m)*b # -(I[b<0]*|b|*(m2-m1))
return f_out
def project(self, z):
"""project is the forward mapping
"""
return LeakyReLUFlow.mapping(z, self.m, self.m2, self.b)
def invert(self, out):
"""invert returns the inverse of the flow called on out, and its derivative
"""
z_in = LeakyReLUFlow.mapping(out, self.m_inv, self.m2_inv, self.b_inv)
dz_dy = tf.gradients(z_in, [out])[0]
#dz_dy = self.m_inv + tf.to_float(tf.less(self.b_inv, out))*(self.m2_inv-self.m_inv)
return z_in, dz_dy
class RadialFlow:
"""RadialFlow provides an implementation of a normalizing flow presented in Rezende et al. 2015
However, in contrast to this method, we define it the reverse direction
(since we are concerned only with the inverse function and its derivative.)
f(z) = z_0 + r*\hat
"""
def __init__(self, z_0, alpha_raw, beta_raw, prev=None):
"""__init__ initializes the flow object, if a previous flow is
provided, the radius, z_0, is set to be the provided z_0 passed through
the previous inverse flow, such that it is stationed in the correct
location.
Args:
z_0: the location of the center point in the output space.
alpha_raw: controls how dispersed the warping is.
beta_raw: controls the magnitude of warping
"""
alpha = tf.nn.softplus(alpha_raw)
beta = tf.exp(beta_raw) -1. # this is bounded to be above -1
self.alpha, self.beta = alpha, beta
if prev is None:
self.z_0 = z_0
else:
self.z_0, _ = prev.invert(z_0)
def invert(self, out):
r = tf.abs(out - self.z_0)
h = (self.beta*self.alpha)/(self.alpha + r)
z_in = out + h*(out-self.z_0)
dz_dy = tf.gradients(z_in, [out])[0]
return z_in, dz_dy
class RadialFlow2DNew:
"""RadialFlow2DNew provides an implementation of an adaptation of the
normalizing flow presented in Rezende et al. 2015
However, in contrast to this method, we define it the reverse direction
(since we are concerned only with the inverse function and its derivative.)
Additionally, we make nonlinearity in the flow asymetric. The orientation
of the asymetry is given by theta, the extent of how squashed it is, is
given by kappa.
if kappa is 0, the nonlinearity does not occur along the orthogonal
dimension...
if theta = 0, the nonlinearity is most quickly significant along the x1 direction,
if theta = pi/2 or -pi/2, the nonlinearity is most quickly significant along the x2 direction,
"""
def __init__(self, z_0, alpha_raw, beta_raw, theta_raw, prev=None):
"""__init__ initializes the flow object, if a previous flow is
provided, the radius, z_0, is set to be the provided z_0 passed through
the previous inverse flow, such that it is stationed in the correct
location.
Args:
z_0: the 2D location of the center point in the output space.
alpha_raw: controls how dispersed the warping is.
beta_raw: controls the slope of warping
theta_raw: rotation
prev: previous flow, if provided z_0 is passed through that to
anchor it's location in the output.
"""
alpha = tf.nn.softplus(alpha_raw)
beta = tf.exp(beta_raw) -1. # this is bounded to be above -1
theta = tf.tanh(theta_raw)*np.pi/2
#print "init flow, z_0.shape",z_0.shape
#print "z_0 input shape", z_0.shape
#print "theta shape", theta.shape
gridlocked = False
if gridlocked:
self.A = tf.stack([
tf.stack([1.,0.]),
tf.stack([0.,1.])
])
else:
self.A = tf.stack([
tf.stack([tf.cos(theta), -tf.sin(theta)]),
tf.stack([tf.sin(theta), tf.cos(theta)])
])
if len(self.A.shape) != 2:
self.A = tf.transpose(self.A,[2,3,0,1])
self.alpha, self.beta, self.theta = alpha, beta, theta
if prev is None:
self.z_0 = z_0
else:
self.z_0, _ = prev.invert(z_0)
def invert(self, out):
out_sub_z0 = out-self.z_0
if len(out_sub_z0.shape) != 2:
out_sub_z0_proj = tf.multiply(self.A, out_sub_z0[:,:,None,:])
out_sub_z0_proj = tf.reduce_sum(out_sub_z0_proj,axis=-1)
out_proj = tf.multiply(self.A, out[:, :, None, :])
out_proj = tf.reduce_sum(out_proj, axis=-1)
# now shape is [n_samples, ?, 2]
else:
out_sub_z0 = tf.transpose(out_sub_z0)
out_sub_z0_proj = tf.matmul(self.A, out_sub_z0)
out_sub_z0_proj = tf.transpose(out_sub_z0_proj)
# We want to do this per dimension...
r = tf.abs(out_sub_z0_proj)
h = 1./(self.alpha + r)
# in a departure from the original asymetric implementation, we use
# out_proj, rather than out. This ensures the function is
# monotonically increasing.
z_in = out_proj + self.beta*self.alpha*h*out_sub_z0_proj
if len(z_in.shape) != 2:
jacobian_matrices = tf.stack([tf.gradients(
z_in[:,:,i], out, name="jacobian_matrix"
)[0] for i in range(2)], axis=2)
jacobian_determinant = tf.stack(tf.matrix_determinant(
jacobian_matrices, name="jacobian_determinant"))
else:
jacobian_matrix = tf.stack([tf.gradients(
z_in[:,i], out, name="jacobian_matrix"
)[0] for i in range(2)],axis=1)
jacobian_determinant = tf.matrix_determinant(jacobian_matrix,
name="jacobian_determinant")
return z_in, jacobian_determinant
class RadialFlow2D:
"""RadialFlow2D provides an implementation of an adaptation of the
normalizing flow presented in Rezende et al. 2015
However, in contrast to this method, we define it the reverse direction
(since we are concerned only with the inverse function and its derivative.)
Additionally, we make nonlinearity in the flow asymetric. The orientation
of the asymetry is given by theta, the extent of how squashed it is, is
given by kappa.
if kappa is 0, the nonlinearity does not occur along the orthogonal
dimension...
if theta = 0, the nonlinearity is most quickly significant along the x1 direction,
if theta = pi/2 or -pi/2, the nonlinearity is most quickly significant along the x2 direction,
"""
def __init__(self, z_0, alpha_raw, beta, theta_raw, prev=None,
pos_beta=False):
"""__init__ initializes the flow object, if a previous flow is
provided, the radius, z_0, is set to be the provided z_0 passed through
the previous inverse flow, such that it is stationed in the correct
location.
Args:
z_0: the 2D location of the center point in the output space.
alpha: controls how dispersed the warping is.
beta: controls the magnitude of warping
theta: rotation
prev: previous flow, if provided z_0 is passed through that to
anchor it's location in the output.
"""
theta = tf.tanh(theta_raw)*np.pi/2
gridlocked = False
if gridlocked:
self.A = tf.stack([
tf.stack([1.,0.]),
tf.stack([0.,1.])
])
else:
self.A = tf.stack([
tf.stack([tf.cos(theta), -tf.sin(theta)]),
tf.stack([tf.sin(theta), tf.cos(theta)])
])
# Sometimes, better performance is observed when betas for both
# dimensions have the same sign. We enforce this here.
if pos_beta:
beta = -tf.nn.softplus(beta)
else:
beta = tf.nn.softplus(beta)
if len(self.A.shape) != 2:
self.A = tf.transpose(self.A,[2,3,0,1])
# Beta must be greater than -alpha, we enforce this through the
# opposite condition, alpha > -Beta.
alpha_min = (tf.abs(beta)-beta)/2. # this is 0 if beta > 0
alpha = tf.log(tf.exp(alpha_raw)+1.) + alpha_min
self.alpha, self.beta, self.theta = alpha, beta, theta
# We thead the cetner points throught the previous flows if given.
if prev is None:
self.z_0 = z_0
else:
self.z_0, _ = prev.invert(z_0)
def invert(self, out):
out_sub_z0 = out-self.z_0
if len(out_sub_z0.shape) != 2:
out_sub_z0_proj = tf.multiply(self.A, out_sub_z0[:,:,None,:])
out_sub_z0_proj = tf.reduce_sum(out_sub_z0_proj,axis=-1)
# now shape is [n_samples, ?, 2]
else:
out_sub_z0 = tf.transpose(out_sub_z0)
out_sub_z0_proj = tf.matmul(self.A, out_sub_z0)
out_sub_z0_proj = tf.transpose(out_sub_z0_proj)
# We want to do this per dimension...
r = tf.abs(out_sub_z0_proj)
h = 1./(self.alpha + r)
z_in = out + self.beta*h*out_sub_z0_proj
if len(z_in.shape) != 2: # i.e. if sampling or input dependent.
jacobian_matrices = tf.stack([tf.gradients(
z_in[:,:,i], out, name="jacobian_matrix")[0] for i in
range(2)], axis=2)#[j] for j in range(z_in.get_shape().as_list()[0])]
jacobian_determinants = tf.matrix_determinant(jacobian_matrices,
name="jacobian_determinant")
jacobian_determinant = tf.stack(jacobian_determinants)
else:
jacobian_matrix = tf.stack([tf.gradients(
z_in[:,i], out, name="jacobian_matrix"
)[0] for i in range(2)],axis=1)
jacobian_determinant = tf.matrix_determinant(jacobian_matrix,
name="jacobian_determinant")
return z_in, jacobian_determinant
# Store layers weight & bias
def construct_radial_network(x, n_flows, n_input, n_hidden_units,
reuse=False, linear_first=True, predict_var=False, n_samples=1,
keep_prob=1., fixed_flows=False):
"""construct_radial_network creates a radial flow network whose parmeters
are defined as the output of an MLP.
Args:
x: input tensor
n_flows: the number of stages in the normalizing flow
n_input: number of input dimensions
n_hidden_units: list containing the number of hidden units in each layer
reuse: theano flag for if allocating additional memory.
linear_first: if first stage of the flow should be a linear flow
predict_var: set to have the slope of the linear flow predicted
n_samples: if using dropout, the number of samples to use.
keep_prob: the probability of dropping hidden units.
fixed_flows: set True to not parameterized flows as a function of the
input.
Returns:
the weights, biases and list of output samples. If n_samples is 1, we
return just the output (not as a list)
"""
### Check For Valid input
if n_samples != 1: assert keep_prob != 1. # only sample if using dropout
if predict_var: assert linear_first # only a valid option if using linear stage
# Define weights and Biases
n_units = [n_input] + n_hidden_units
n_layers = len(n_hidden_units)
with tf.variable_scope('radial_network', reuse=reuse):
# if we run this more than once, we reuse the scope to avoid
# redefining the variables.
weights = {
'w%d'%i: tf.get_variable(
'weights%d'%i,shape=[n_units[i-1], n_units[i]],
initializer=tf.contrib.layers.xavier_initializer(),)
for i in range(1,n_layers+1)
}
biases = {
'b%d'%i: tf.get_variable("biases%d"%i,
initializer = tf.constant(
np.random.normal(size=[n_units[i]]))
) for i in range(1,n_layers+1)
}
for i in range(n_flows):
n_outputs = 2 if linear_first and i==0 else 3
biases['out_%02d'%i]=tf.get_variable("bias_output_%02d"%i,
initializer= tf.constant(np.random.normal(size=[n_outputs]))
)
# To learn a fixed flow (other than the first flow) don't add
# output weights
if fixed_flows and i > 0:
continue
weights['out_%02d'%i]=tf.get_variable(
'output_weights_%02d'%i,shape=[n_units[-1], n_outputs],
initializer=tf.contrib.layers.xavier_initializer()
)
out_layers_samples = utils.multilayer_perceptron(
x, weights, biases, n_flows, n_layers, keep_prob=keep_prob,
n_samples=n_samples
)
if linear_first and not predict_var:
print("Fixing Variance to be shared across all points")
for out_layers in out_layers_samples:
out_layers["flow_00"] *= np.array([0.,1.])
out_layers["flow_00"] += np.array([1.,0.])*biases["out_00"]
# Define Normalizing Flow
flows_samples = []
for out_layers in out_layers_samples:
flows = []
for f_l in range(n_flows):
if f_l ==0 and linear_first:
# set bias and slope
b, m = out_layers["flow_%02d"%f_l][:,1], tf.exp(out_layers["flow_%02d"%f_l][:,0],name="slope_%02d"%f_l)
flow = LinearFlow(b=b, m=m)
else:
#TODO: Why is this exp???
z_0 = tf.exp(out_layers["flow_%02d"%f_l][:,0],name="z0_%02d"%f_l)
### Rezende parameterization
#alpha = tf.nn.softplus(out_layers["flow_%02d"%f_l][:,1],name="alpha_%02d"%f_l)
#beta = -alpha + tf.nn.softplus(out_layers["flow_%02d"%f_l][:,2],name="beta_%02d"%f_l)
# New parameterization
beta = out_layers["flow_%02d"%f_l][:,2]
alpha_min = (tf.abs(beta)-beta)/2.
alpha = tf.log(tf.exp(out_layers["flow_%02d"%f_l][:,1])+1.)+alpha_min
flow = RadialFlow(z_0, alpha, beta)
flows.append(flow)
if n_samples == 1:
return weights, biases, flows
flows_samples.append(flows)
return weights, biases, flows_samples
def link(flows, y):
zs_bkd = []
log_dz_dy_bkd = []
for i, flow in enumerate(flows):
z_bkd, dz_dy = flow.invert(y if i == 0 else zs_bkd[-1])
tf.summary.histogram('dz_dy_%d'%i, dz_dy)
zs_bkd.append(z_bkd)
log_dz_dy_bkd.append(tf.log(dz_dy))
zs_bkd, log_dz_dy_bkd = list(zs_bkd), list(log_dz_dy_bkd)
log_dz_dy_total = 0.
for log_dz_dy in log_dz_dy_bkd:
log_dz_dy_total += log_dz_dy
return zs_bkd, log_dz_dy_total