forked from blt2114/CDE_with_BNF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_noise_network.py
59 lines (47 loc) · 2.05 KB
/
input_noise_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import division
import network
import tensorflow as tf
import numpy as np
class input_noise_network(network.model_base):
"""input_noise_network is a subclass of model_base for networks with
input noise
"""
def __init__(self, r_mag_W=0., **kwargs):
"""initialize a network with input noise
"""
## for 1d outputs
n_outputs = 1
network.model_base.__init__(self, n_outputs=n_outputs, **kwargs)
### Construct likelihood using normalizing flows
# In this case, the likelihood is defined by our normalizing flow.
self.nlog_ls, self.nlog_l = self.likelihood(self.y)
tf.summary.histogram("nlog_ls",self.nlog_ls)
tf.summary.scalar("nlog_l",self.nlog_l)
# If we are doing a 2-stage training, we will only optimize wrt this
# full set of parameters in the 2nd stage.
### Construct Cost (likelihood and regularizers)
self.cost = self.nlog_l
self.add_weight_decay(r_mag_W)
tf.summary.scalar("cost", self.cost)
### set 2 optimizer stages
self.construct_optimizer()
def likelihood(self, y):
### Link the stages of the flow together. The zs are ordered from the
# base distribution to the observation distribution.
# in this case, this is the sum of log jacobian determinents.
errors = self.outputs-self.y
sigma = tf.Variable( 1.0, name="sigma")
self.params.append(sigma)
self.all_params.append(sigma)
dist = tf.contrib.distributions.MultivariateNormalDiag(
loc=np.zeros(1, dtype=np.float32),
scale_diag=sigma*np.ones(1, dtype=np.float32)
)
# Calculate the negative log likelihood
nlog_ls = -(dist.log_prob(errors) - tf.reduce_sum(tf.log(self.y_std)))
### Do log sum exp
if self.n_samples != 1:
nlog_ls = -tf.reduce_logsumexp(-nlog_ls, axis=0)
nlog_ls += tf.log(float(self.n_samples))
nlog_l = tf.reduce_mean(nlog_ls)
return nlog_ls, nlog_l