|
5 | 5 |
|
6 | 6 | np.random.seed(666) |
7 | 7 |
|
| 8 | +DO_TEST=False |
8 | 9 | PLOT_SHOW = False |
9 | 10 |
|
10 | 11 |
|
11 | 12 | #################################################################################### |
12 | 13 | def test_imageProcessing(): |
13 | | - pass |
14 | | - # # generate a random noise |
15 | | - # imageSize = 512 |
16 | | - # noiseStd = np.random.rand(1) * 4 |
17 | | - # noiseMean = np.random.randint( |
18 | | - # 75, |
19 | | - # 100, |
20 | | - # [ |
21 | | - # 1, |
22 | | - # ], |
23 | | - # ).item() |
24 | | - # noise = np.round(np.random.randn(imageSize, imageSize) * noiseStd + noiseMean) |
25 | | - |
26 | | - # # scatter some point sources on it |
27 | | - # pointSize = 5 |
28 | | - # pointHalfSize = pointSize // 2 |
29 | | - # pointSource = np.asarray( |
30 | | - # [[1, 1, 1, 1, 1], [1, 5, 30, 5, 1], [1, 30, 100, 30, 1], [1, 5, 30, 5, 1], [1, 1, 1, 1, 1]] |
31 | | - # ) |
32 | | - |
33 | | - # scene = noise.copy() |
34 | | - # numPointSources = 3000 |
35 | | - # for point in range(numPointSources): |
36 | | - # row = np.random.randint( |
37 | | - # pointHalfSize, |
38 | | - # imageSize - pointHalfSize, |
39 | | - # [ |
40 | | - # 1, |
41 | | - # ], |
42 | | - # ).item() |
43 | | - # col = np.random.randint( |
44 | | - # pointHalfSize, |
45 | | - # imageSize - pointHalfSize, |
46 | | - # [ |
47 | | - # 1, |
48 | | - # ], |
49 | | - # ).item() |
50 | | - |
51 | | - # cutout = scene[row - pointHalfSize : row + pointHalfSize + 1, col - pointHalfSize : col + pointHalfSize + 1] |
52 | | - # cutout = cutout + pointSource |
53 | | - # scene[row - pointHalfSize : row + pointHalfSize + 1, col - pointHalfSize : col + pointHalfSize + 1] = cutout |
54 | | - |
55 | | - # # generate centroids from the image |
56 | | - # thresholdRate = 0.014 |
57 | | - # borderWidth = np.random.randint( |
58 | | - # 0, |
59 | | - # 4, |
60 | | - # [ |
61 | | - # 1, |
62 | | - # ], |
63 | | - # ).item() |
64 | | - # cScene = NumCpp.NdArray(imageSize) |
65 | | - # cScene.setArray(scene) |
66 | | - |
67 | | - # threshold = NumCpp.generateThreshold(cScene, thresholdRate) |
68 | | - # print(f"Scene Min = {scene.min()}") |
69 | | - # print(f"Scene Max = {scene.max()}") |
70 | | - # print(f"Threshold = {threshold}") |
71 | | - # print(f"Desired Rate = {thresholdRate}") |
72 | | - # print(f"Actual Rate(Threshold) = {np.count_nonzero(scene > threshold) / scene.size}") |
73 | | - # print(f"Actual Rate(Threshold - 1) = {np.count_nonzero(scene > threshold - 1) / scene.size}") |
74 | | - |
75 | | - # centroids = list(NumCpp.generateCentroids(cScene, thresholdRate, "pre", borderWidth)) |
76 | | - # print(f"Window Pre Number of Centroids (Border = {borderWidth}) = {len(centroids)}") |
77 | | - |
78 | | - # # plt the results |
79 | | - # plt.figure() |
80 | | - # plt.imshow(scene) |
81 | | - # plt.colorbar() |
82 | | - # plt.clim([threshold, threshold + 1]) |
83 | | - # plt.xlabel("Rows") |
84 | | - # plt.ylabel("Cols") |
85 | | - # plt.title(f"Window Pre Centroids\nNumber of Centroids = {len(centroids)}") |
86 | | - |
87 | | - # for centroid in centroids: |
88 | | - # plt.plot(centroid.col(), centroid.row(), "og", fillstyle="none") |
89 | | - |
90 | | - # if PLOT_SHOW: |
91 | | - # plt.show() |
92 | | - |
93 | | - # centroidInfo = np.asarray([[centroid.intensity(), centroid.eod()] for centroid in centroids]) |
94 | | - |
95 | | - # plt.figure() |
96 | | - # plt.plot(np.sort(centroidInfo[:, 0].flatten())) |
97 | | - # plt.title("Window Pre Centroid Intensities") |
98 | | - # plt.xlabel("Centroid #") |
99 | | - # plt.ylabel("Counts") |
100 | | - # if PLOT_SHOW: |
101 | | - # plt.show() |
102 | | - |
103 | | - # plt.figure() |
104 | | - # plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100)) |
105 | | - # plt.title("Window Pre Centroid EOD") |
106 | | - # plt.xlabel("Centroid #") |
107 | | - # plt.ylabel("EOD (%)") |
108 | | - # if PLOT_SHOW: |
109 | | - # plt.show() |
110 | | - |
111 | | - # centroids = list(NumCpp.generateCentroids(cScene, thresholdRate, "post", borderWidth)) |
112 | | - # print(f"Window Post Number of Centroids (Border = {borderWidth}) = {len(centroids)}") |
113 | | - |
114 | | - # # plt the results |
115 | | - # plt.figure() |
116 | | - # plt.imshow(scene) |
117 | | - # plt.colorbar() |
118 | | - # plt.clim([threshold, threshold + 1]) |
119 | | - # plt.xlabel("Rows") |
120 | | - # plt.ylabel("Cols") |
121 | | - # plt.title(f"Window Post Centroids\nNumber of Centroids = {len(centroids)}") |
122 | | - |
123 | | - # for centroid in centroids: |
124 | | - # plt.plot(centroid.col(), centroid.row(), "og", fillstyle="none") |
125 | | - |
126 | | - # if PLOT_SHOW: |
127 | | - # plt.show() |
128 | | - |
129 | | - # centroidInfo = np.asarray([[centroid.intensity(), centroid.eod()] for centroid in centroids]) |
130 | | - |
131 | | - # plt.figure() |
132 | | - # plt.plot(np.sort(centroidInfo[:, 0].flatten())) |
133 | | - # plt.title("Window Post Centroid Intensities") |
134 | | - # plt.xlabel("Centroid #") |
135 | | - # plt.ylabel("Counts") |
136 | | - # if PLOT_SHOW: |
137 | | - # plt.show() |
138 | | - |
139 | | - # plt.figure() |
140 | | - # plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100)) |
141 | | - # plt.title("Window Post Centroid EOD") |
142 | | - # plt.xlabel("Centroid #") |
143 | | - # plt.ylabel("EOD (%)") |
144 | | - # if PLOT_SHOW: |
145 | | - # plt.show() |
146 | | - |
147 | | - # plt.close("all") |
| 14 | + if not DO_TEST: |
| 15 | + return |
| 16 | + |
| 17 | + # generate a random noise |
| 18 | + imageSize = 512 |
| 19 | + noiseStd = np.random.rand(1) * 4 |
| 20 | + noiseMean = np.random.randint( |
| 21 | + 75, |
| 22 | + 100, |
| 23 | + [ |
| 24 | + 1, |
| 25 | + ], |
| 26 | + ).item() |
| 27 | + noise = np.round(np.random.randn(imageSize, imageSize) * noiseStd + noiseMean) |
| 28 | + |
| 29 | + # scatter some point sources on it |
| 30 | + pointSize = 5 |
| 31 | + pointHalfSize = pointSize // 2 |
| 32 | + pointSource = np.asarray( |
| 33 | + [[1, 1, 1, 1, 1], [1, 5, 30, 5, 1], [1, 30, 100, 30, 1], [1, 5, 30, 5, 1], [1, 1, 1, 1, 1]] |
| 34 | + ) |
| 35 | + |
| 36 | + scene = noise.copy() |
| 37 | + numPointSources = 3000 |
| 38 | + for point in range(numPointSources): |
| 39 | + row = np.random.randint( |
| 40 | + pointHalfSize, |
| 41 | + imageSize - pointHalfSize, |
| 42 | + [ |
| 43 | + 1, |
| 44 | + ], |
| 45 | + ).item() |
| 46 | + col = np.random.randint( |
| 47 | + pointHalfSize, |
| 48 | + imageSize - pointHalfSize, |
| 49 | + [ |
| 50 | + 1, |
| 51 | + ], |
| 52 | + ).item() |
| 53 | + |
| 54 | + cutout = scene[row - pointHalfSize : row + pointHalfSize + 1, col - pointHalfSize : col + pointHalfSize + 1] |
| 55 | + cutout = cutout + pointSource |
| 56 | + scene[row - pointHalfSize : row + pointHalfSize + 1, col - pointHalfSize : col + pointHalfSize + 1] = cutout |
| 57 | + |
| 58 | + # generate centroids from the image |
| 59 | + thresholdRate = 0.014 |
| 60 | + borderWidth = np.random.randint( |
| 61 | + 0, |
| 62 | + 4, |
| 63 | + [ |
| 64 | + 1, |
| 65 | + ], |
| 66 | + ).item() |
| 67 | + cScene = NumCpp.NdArray(imageSize) |
| 68 | + cScene.setArray(scene) |
| 69 | + |
| 70 | + threshold = NumCpp.generateThreshold(cScene, thresholdRate) |
| 71 | + print(f"Scene Min = {scene.min()}") |
| 72 | + print(f"Scene Max = {scene.max()}") |
| 73 | + print(f"Threshold = {threshold}") |
| 74 | + print(f"Desired Rate = {thresholdRate}") |
| 75 | + print(f"Actual Rate(Threshold) = {np.count_nonzero(scene > threshold) / scene.size}") |
| 76 | + print(f"Actual Rate(Threshold - 1) = {np.count_nonzero(scene > threshold - 1) / scene.size}") |
| 77 | + |
| 78 | + centroids = list(NumCpp.generateCentroids(cScene, thresholdRate, "pre", borderWidth)) |
| 79 | + print(f"Window Pre Number of Centroids (Border = {borderWidth}) = {len(centroids)}") |
| 80 | + |
| 81 | + # plt the results |
| 82 | + plt.figure() |
| 83 | + plt.imshow(scene) |
| 84 | + plt.colorbar() |
| 85 | + plt.clim([threshold, threshold + 1]) |
| 86 | + plt.xlabel("Rows") |
| 87 | + plt.ylabel("Cols") |
| 88 | + plt.title(f"Window Pre Centroids\nNumber of Centroids = {len(centroids)}") |
| 89 | + |
| 90 | + for centroid in centroids: |
| 91 | + plt.plot(centroid.col(), centroid.row(), "og", fillstyle="none") |
| 92 | + |
| 93 | + if PLOT_SHOW: |
| 94 | + plt.show() |
| 95 | + |
| 96 | + centroidInfo = np.asarray([[centroid.intensity(), centroid.eod()] for centroid in centroids]) |
| 97 | + |
| 98 | + plt.figure() |
| 99 | + plt.plot(np.sort(centroidInfo[:, 0].flatten())) |
| 100 | + plt.title("Window Pre Centroid Intensities") |
| 101 | + plt.xlabel("Centroid #") |
| 102 | + plt.ylabel("Counts") |
| 103 | + if PLOT_SHOW: |
| 104 | + plt.show() |
| 105 | + |
| 106 | + plt.figure() |
| 107 | + plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100)) |
| 108 | + plt.title("Window Pre Centroid EOD") |
| 109 | + plt.xlabel("Centroid #") |
| 110 | + plt.ylabel("EOD (%)") |
| 111 | + if PLOT_SHOW: |
| 112 | + plt.show() |
| 113 | + |
| 114 | + centroids = list(NumCpp.generateCentroids(cScene, thresholdRate, "post", borderWidth)) |
| 115 | + print(f"Window Post Number of Centroids (Border = {borderWidth}) = {len(centroids)}") |
| 116 | + |
| 117 | + # plt the results |
| 118 | + plt.figure() |
| 119 | + plt.imshow(scene) |
| 120 | + plt.colorbar() |
| 121 | + plt.clim([threshold, threshold + 1]) |
| 122 | + plt.xlabel("Rows") |
| 123 | + plt.ylabel("Cols") |
| 124 | + plt.title(f"Window Post Centroids\nNumber of Centroids = {len(centroids)}") |
| 125 | + |
| 126 | + for centroid in centroids: |
| 127 | + plt.plot(centroid.col(), centroid.row(), "og", fillstyle="none") |
| 128 | + |
| 129 | + if PLOT_SHOW: |
| 130 | + plt.show() |
| 131 | + |
| 132 | + centroidInfo = np.asarray([[centroid.intensity(), centroid.eod()] for centroid in centroids]) |
| 133 | + |
| 134 | + plt.figure() |
| 135 | + plt.plot(np.sort(centroidInfo[:, 0].flatten())) |
| 136 | + plt.title("Window Post Centroid Intensities") |
| 137 | + plt.xlabel("Centroid #") |
| 138 | + plt.ylabel("Counts") |
| 139 | + if PLOT_SHOW: |
| 140 | + plt.show() |
| 141 | + |
| 142 | + plt.figure() |
| 143 | + plt.plot(np.sort(centroidInfo[:, 1].flatten() * 100)) |
| 144 | + plt.title("Window Post Centroid EOD") |
| 145 | + plt.xlabel("Centroid #") |
| 146 | + plt.ylabel("EOD (%)") |
| 147 | + if PLOT_SHOW: |
| 148 | + plt.show() |
| 149 | + |
| 150 | + plt.close("all") |
0 commit comments