diff --git a/backend/app.py b/backend/app.py index 0840e84..3df3796 100644 --- a/backend/app.py +++ b/backend/app.py @@ -60,6 +60,7 @@ def clean_cache(state: BackendState) -> None: except Exception as e: print(f"Error deleting {pickle}: {e}") + # Clean regular cache cache_files = glob.glob("cache/*") if len(cache_files) > 35: print("cache folder has more than 35 files, deleting old ones") @@ -71,6 +72,18 @@ def clean_cache(state: BackendState) -> None: except Exception as e: print(f"Error deleting {cache_file}: {e}") + # Clean ucache + ucache_files = glob.glob("ucache/*") + if len(ucache_files) > 35: + print("ucache folder has more than 35 files, deleting old ones") + ucache_files.sort(key=os.path.getmtime) + for ucache_file in ucache_files[:-35]: + print(f"deleting {ucache_file}") + try: + os.remove(ucache_file) + except Exception as e: + print(f"Error deleting {ucache_file}: {e}") + @repeat_every(seconds=60 * 8, wait_first=True) async def repeatedly_clean_cache(state: BackendState) -> None: diff --git a/backend/middleware/cache_middleware.py b/backend/middleware/cache_middleware.py index 914a57b..cdad5d7 100644 --- a/backend/middleware/cache_middleware.py +++ b/backend/middleware/cache_middleware.py @@ -18,9 +18,12 @@ def __init__(self, app: ASGIApp, state: BackendState, cache_dir: str = "cache"): super().__init__(app) self.state = state self.cache_dir = cache_dir + self.ucache_dir = "ucache" self.revalidation_locks: Dict[str, asyncio.Lock] = {} if not os.path.exists(self.cache_dir): os.makedirs(self.cache_dir) + if not os.path.exists(self.ucache_dir): + os.makedirs(self.ucache_dir) async def dispatch(self, request: BackendRequest, call_next: Callable): if not request.url.path.startswith("/api"): @@ -155,7 +158,22 @@ async def _fetch_and_cache( os.makedirs(os.path.dirname(cache_file), exist_ok=True) with open(cache_file, "w") as f: json.dump(response_data, f) - print(f"Cached fresh data for {request.url.path}") + + ucache_key = f"{request.method}{request.url.path}" + if request.url.query: + safe_query = request.url.query.replace("&", "_").replace( + "=", "-" + ) + ucache_key = f"{ucache_key}__{safe_query}" + ucache_key = ucache_key.replace("/", "_") + + ucache_file = os.path.join(self.ucache_dir, f"{ucache_key}.json") + with open(ucache_file, "w") as f: + json.dump(response_data, f) + + print( + f"Cached fresh data for {request.url.path} with query {request.url.query}" + ) else: print( f"Failed to cache data for {request.url.path}. Status code: {response.status_code}" diff --git a/src/lib/api.py b/src/lib/api.py index 32637a2..b5b1af1 100644 --- a/src/lib/api.py +++ b/src/lib/api.py @@ -1,3 +1,4 @@ +import json import os from typing import Optional @@ -9,6 +10,7 @@ load_dotenv() BASE_URL = os.environ["BACKEND_URL"] +R2_PREFIX = "https://pub" + "-7dc8852b9fd5407a92614093e1f73280.r" + "2.dev" def api( @@ -52,3 +54,41 @@ def api( return pd.DataFrame(response.json()) except ValueError: return response.json() + + +def api2(url: str, params: Optional[dict] = None) -> dict: + """ + Fetch data from R2 storage using the simplified naming scheme. + Example: /api/health/health_distribution -> GET_api_health_health_distribution.json + Example with params: /api/price-shock/usermap?asset_group=ignore+stables&oracle_distortion=0.05 + -> GET_api_price-shock_usermap__asset_group-ignore+stables_oracle_distortion-0.05.json + """ + print("SERVING FROM R2") + + try: + # Convert URL path to R2 filename format + cache_key = f"GET/api/{url}".replace("/", "_") + + # Handle query parameters exactly as they appear in the URL + if params: + # Convert params to URL query string format + query_parts = [] + for k, v in params.items(): + # Replace space with + to match URL encoding + if isinstance(v, str): + v = v.replace(" ", "%2B") + query_parts.append(f"{k}-{v}") + query_str = "_".join(query_parts) + cache_key = f"{cache_key}__{query_str}" + + r2_url = f"{R2_PREFIX}/{cache_key}.json" + print(f"Fetching from R2: {r2_url}") + response = requests.get(r2_url) + if response.status_code != 200: + raise Exception(f"Failed to fetch from R2: {response.status_code}") + + response_data = response.json() + return response_data["content"] + except Exception as e: + print(f"Error fetching from R2: {str(e)}") + raise diff --git a/src/main.py b/src/main.py index 4f9ae20..1c04653 100644 --- a/src/main.py +++ b/src/main.py @@ -5,11 +5,14 @@ from lib.page import needs_backend from lib.page import sidebar from page.asset_liability import asset_liab_matrix_page +from page.asset_liability_cached import asset_liab_matrix_cached_page from page.backend import backend_page from page.health import health_page +from page.health_cached import health_cached_page from page.liquidation_curves import liquidation_curves_page from page.orderbook import orderbook_page from page.price_shock import price_shock_page +from page.price_shock_cached import price_shock_cached_page from sections.welcome import welcome_page import streamlit as st @@ -58,6 +61,24 @@ title="Liquidation Curves", icon="🌊", ), + st.Page( + health_cached_page, + url_path="health-cached", + title="Health (Cached)", + icon="🏥", + ), + st.Page( + price_shock_cached_page, + url_path="price-shock-cached", + title="Price Shock (Cached)", + icon="💸", + ), + st.Page( + asset_liab_matrix_cached_page, + url_path="asset-liab-matrix-cached", + title="Asset-Liab Matrix (Cached)", + icon="📊", + ), ] if os.getenv("DEV"): pages.append( diff --git a/src/page/asset_liability_cached.py b/src/page/asset_liability_cached.py new file mode 100644 index 0000000..d8701d7 --- /dev/null +++ b/src/page/asset_liability_cached.py @@ -0,0 +1,79 @@ +import json + +from driftpy.constants.perp_markets import mainnet_perp_market_configs +from driftpy.constants.spot_markets import mainnet_spot_market_configs +from lib.api import api2 +import pandas as pd +from requests.exceptions import JSONDecodeError +import streamlit as st + + +options = [0, 1, 2, 3] +labels = [ + "none", + "liq within 50% of oracle", + "maint. health < 10%", + "init. health < 10%", +] + + +def asset_liab_matrix_cached_page(): + params = st.query_params + mode = int(params.get("mode", 0)) + perp_market_index = int(params.get("perp_market_index", 0)) + + mode = st.selectbox( + "Options", options, format_func=lambda x: labels[x], index=options.index(mode) + ) + st.query_params.update({"mode": mode}) + + perp_market_index = st.selectbox( + "Market index", + [x.market_index for x in mainnet_perp_market_configs], + index=[x.market_index for x in mainnet_perp_market_configs].index( + perp_market_index + ), + ) + st.query_params.update({"perp_market_index": perp_market_index}) + + try: + url = f"asset-liability/matrix/{0 if mode is None else mode}/{0 if perp_market_index is None else perp_market_index}" + result = api2(url) + if "result" in result and result["result"] == "miss": + st.write("Fetching data for the first time...") + st.image( + "https://i.gifer.com/origin/8a/8a47f769c400b0b7d81a8f6f8e09a44a_w200.gif" + ) + st.write("Check again in one minute!") + st.stop() + + except Exception as e: + if type(e) == JSONDecodeError: + print("HIT A JSONDecodeError...", e) + st.write("Fetching data for the first time...") + st.image( + "https://i.gifer.com/origin/8a/8a47f769c400b0b7d81a8f6f8e09a44a_w200.gif" + ) + st.write("Check again in one minute!") + st.stop() + else: + st.write(e) + st.stop() + + res = pd.DataFrame(result["res"]) + df = pd.DataFrame(result["df"]) + + st.write(f"{df.shape[0]} users for scenario") + st.write(res) + + tabs = st.tabs(["FULL"] + [x.symbol for x in mainnet_spot_market_configs]) + tabs[0].dataframe(df, hide_index=True) + + for idx, tab in enumerate(tabs[1:]): + important_cols = [x for x in df.columns if "spot_" + str(idx) in x] + toshow = df[["spot_asset", "net_usd_value"] + important_cols] + toshow = toshow[toshow[important_cols].abs().sum(axis=1) != 0].sort_values( + by="spot_" + str(idx) + "_all", ascending=False + ) + tab.write(f"{ len(toshow)} users with this asset to cover liabilities") + tab.dataframe(toshow, hide_index=True) diff --git a/src/page/health_cached.py b/src/page/health_cached.py new file mode 100644 index 0000000..f102f64 --- /dev/null +++ b/src/page/health_cached.py @@ -0,0 +1,45 @@ +from lib.api import api2 +import plotly.express as px +import streamlit as st + +from utils import fetch_result_with_retry + + +def health_cached_page(): + health_distribution = api2("health/health_distribution") + largest_perp_positions = api2("health/largest_perp_positions") + most_levered_positions = api2("health/most_levered_perp_positions_above_1m") + largest_spot_borrows = api2("health/largest_spot_borrows") + most_levered_borrows = api2("health/most_levered_spot_borrows_above_1m") + + print(health_distribution) + + fig = px.bar( + health_distribution, + x="Health Range", + y="Counts", + title="Health Distribution", + hover_data={"Notional Values": ":,"}, # Custom format for notional values + labels={"Counts": "Num Users", "Notional Values": "Notional Value ($)"}, + ) + + fig.update_traces( + hovertemplate="Health Range: %{x}
Count: %{y}
Notional Value: $%{customdata[0]:,.0f}" + ) + + with st.container(): + st.plotly_chart(fig, use_container_width=True) + + perp_col, spot_col = st.columns([1, 1]) + + with perp_col: + st.markdown("### **Largest perp positions:**") + st.dataframe(largest_perp_positions, hide_index=True) + st.markdown("### **Most levered perp positions > $1m:**") + st.dataframe(most_levered_positions, hide_index=True) + + with spot_col: + st.markdown("### **Largest spot borrows:**") + st.dataframe(largest_spot_borrows, hide_index=True) + st.markdown("### **Most levered spot borrows > $750k:**") + st.dataframe(most_levered_borrows, hide_index=True) diff --git a/src/page/price_shock_cached.py b/src/page/price_shock_cached.py new file mode 100644 index 0000000..e0b7e73 --- /dev/null +++ b/src/page/price_shock_cached.py @@ -0,0 +1,173 @@ +import asyncio +from asyncio import AbstractEventLoop +import os +import time +from typing import Any, TypedDict + +from anchorpy import Wallet +from driftpy.account_subscription_config import AccountSubscriptionConfig +from driftpy.drift_client import DriftClient +from driftpy.pickle.vat import Vat +from lib.api import api2 +import pandas as pd +import plotly.graph_objects as go +from solana.rpc.async_api import AsyncClient +import streamlit as st + + +class UserLeveragesResponse(TypedDict): + leverages_none: list[Any] + leverages_up: list[Any] + leverages_down: list[Any] + user_keys: list[str] + distorted_oracles: list[str] + + +def create_dataframes(leverages): + return [pd.DataFrame(lev) for lev in leverages] + + +def calculate_spot_bankruptcies(df): + spot_bankrupt = df[ + (df["spot_asset"] < df["spot_liability"]) & (df["net_usd_value"] < 0) + ] + return (spot_bankrupt["spot_liability"] - spot_bankrupt["spot_asset"]).sum() + + +def calculate_total_bankruptcies(df): + return -df[df["net_usd_value"] < 0]["net_usd_value"].sum() + + +def generate_oracle_moves(num_scenarios, oracle_distort): + return ( + [-oracle_distort * (i + 1) * 100 for i in range(num_scenarios)] + + [0] + + [oracle_distort * (i + 1) * 100 for i in range(num_scenarios)] + ) + + +def price_shock_plot(user_leverages, oracle_distort: float): + levs = user_leverages + dfs = ( + create_dataframes(levs["leverages_down"]) + + [pd.DataFrame(levs["leverages_none"])] + + create_dataframes(levs["leverages_up"]) + ) + + spot_bankruptcies = [calculate_spot_bankruptcies(df) for df in dfs] + total_bankruptcies = [calculate_total_bankruptcies(df) for df in dfs] + + num_scenarios = len(levs["leverages_down"]) + oracle_moves = generate_oracle_moves(num_scenarios, oracle_distort) + + # Create and sort the DataFrame BEFORE plotting + df_plot = pd.DataFrame( + { + "Oracle Move (%)": oracle_moves, + "Total Bankruptcy ($)": total_bankruptcies, + "Spot Bankruptcy ($)": spot_bankruptcies, + } + ) + + # Sort by Oracle Move to ensure correct line connection order + df_plot = df_plot.sort_values("Oracle Move (%)") + + # Calculate Perp Bankruptcy AFTER sorting + df_plot["Perp Bankruptcy ($)"] = ( + df_plot["Total Bankruptcy ($)"] - df_plot["Spot Bankruptcy ($)"] + ) + + # Create the figure with sorted data + fig = go.Figure() + for column in [ + "Total Bankruptcy ($)", + "Spot Bankruptcy ($)", + "Perp Bankruptcy ($)", + ]: + fig.add_trace( + go.Scatter( + x=df_plot["Oracle Move (%)"], + y=df_plot[column], + mode="lines+markers", + name=column, + ) + ) + + fig.update_layout( + title="Bankruptcies in Crypto Price Scenarios", + xaxis_title="Oracle Move (%)", + yaxis_title="Bankruptcy ($)", + legend_title="Bankruptcy Type", + template="plotly_dark", + ) + + return fig + + +def price_shock_cached_page(): + # Get query parameters + params = st.query_params + print(params, "params") + + cov = params.get("cov", "ignore stables") + oracle_distort = float(params.get("oracle_distort", 0.05)) + + cov_col, distort_col = st.columns(2) + cov = cov_col.selectbox( + "covariance:", + [ + "ignore stables", + "sol + lst only", + "meme", + ], + index=["ignore stables", "sol + lst only", "meme"].index(cov), + ) + + oracle_distort = distort_col.selectbox( + "oracle distortion:", + [0.05, 0.1, 0.2, 0.5, 1], + index=[0.05, 0.1, 0.2, 0.5, 1].index(oracle_distort), + help="step size of oracle distortions", + ) + + # Update query parameters + st.query_params.update({"cov": cov, "oracle_distort": oracle_distort}) + + try: + result = api2( + "price-shock/usermap", + params={ + "asset_group": cov, + "oracle_distortion": oracle_distort, + "n_scenarios": 5, + }, + ) + except Exception as e: + print("HIT AN EXCEPTION...", e) + + if "result" in result and result["result"] == "miss": + st.write("Fetching data for the first time...") + st.image( + "https://i.gifer.com/origin/8a/8a47f769c400b0b7d81a8f6f8e09a44a_w200.gif" + ) + st.write("Check again in one minute!") + st.stop() + + fig = price_shock_plot(result, oracle_distort) + st.plotly_chart(fig) + oracle_down_max = pd.DataFrame(result["leverages_down"][-1]) + with st.expander( + str("oracle down max bankrupt count=") + + str(len(oracle_down_max[oracle_down_max.net_usd_value < 0])) + ): + st.dataframe(oracle_down_max) + + oracle_up_max = pd.DataFrame(result["leverages_up"][-1], index=result["user_keys"]) + with st.expander( + str("oracle up max bankrupt count=") + + str(len(oracle_up_max[oracle_up_max.net_usd_value < 0])) + ): + st.dataframe(oracle_up_max) + + with st.expander("distorted oracle keys"): + st.write(result["distorted_oracles"])